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Foreword 

The NSW Office of the Chief Scientist and Engineer is proud to have contributed financial assistance, 
together with the NSW Department of Planning, Industry and Environment (DPIE), and the NSW 
Smart Sensing Network (NSSN) to the Where is All the Water? project. 

The idea for an intricate sensing project to aid understanding of catchments in NSW arose from a 
number of preceding reviews and projects originating from my own office and that of then NSW 
Minister for Water, Property and Housing, Hon. Melinda Pavey, and Dr Jim Bentley, Deputy 
Secretary (CEO of the NSW Water Sector), Department of Planning, Industry and Environment. 

The early stages of the Where Is All the Water? project coincided with of one of the worst droughts 
on record, culminating in the catastrophic bushfires of 2020; the preparation and delivery of the 
project was during the worst health crisis in living memory; while the final stages and reporting have 
been impacted by extreme flooding in 2021-22. 

In July 2020 my office released its Review of water related data collections, data infrastructure and 
capabilities. Also requested by Minister Pavey, the report is prompted by the question: do we have 
the right data, of sufficient quality, and in useable form to make well-informed decisions? While that 
report is primary concerned with water data governance and management, it does show there is a 
lack of simple, open, telemetered data across NSW. 

The Where is All the Water? project has shown for the first time that low-cost sensor networks can 
respond to the Australian infrastructure problem of great distances and low population. It proves 
that local gravity measurements – soon likely to be augmented with quantum sensing capability – 
are a technology that can help us map the underground; and that satellites have an important role 
to play in the management of resources. It also reveals that we still have a lot to learn about aquifer 
recharge. Wrapped around this is the power of data, particularly the analysis of uncertainty, to reveal 
problems and solutions in our physical world. 

Given the Ministerial impetus to innovate, the NSW Government agencies responsible in the 
management of water are encouraged to read, understand, follow-on and where practical, adopt 
the recommendations of this report. 

 

Prof Hugh Durant-Whyte 

NSW Chief Scientist and Engineer 
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Executive Summary 

The Where is All the Water? exploratory research project helps NSW government agencies and 
other organisations who want to improve aspects of their water management by overcoming gaps 
and discrepancies in the data of water assets, and provides a research platform for integrating 
different types of sensors and the data analytics used to aid modelling, predictions and decision 
making.  This is made possible by being able to bring together innovative sensors such as satellite 
and ground level gravity sensors, to low-cost sensor modules that can accept a wide range of 
physical sensors (temperature, moisture, water levels, and so on), Bayesian analytical tools and an 
expert understanding of the state’s hydrology. 

The project helps us better understand Where is All the Water?, improving our broad measurement 

capabilities, and reducing the extent of “unaccounted differences” (which can be greater than 25%), 

due to our inability to measure and understand variable natural processes. Agencies seek the latest 

research, scientific and technical tools to manage the capture, storage and release of water: The right 

amount of water, in the right place, at the right time. Furthermore, they seek to understand how 

better sensing can provide data to improve knowledge of ground water resources, what 

groundwater is influenced by and influences on; and thus aid more robust, timely, scale appropriate 

decision making. 

This collaborative program brought together university and government partners with the aim of 
developing a probabilistic modelling framework and roadmap to improve integrated and evidence-
based management of water resources in NSW. 

The project partners included a number of university partners. The Australian National University 

(ANU), led two sub-projects; Local gravity sensing, and an investigation into satellite gravity 

measurements of Australian water. Macquarie University brought expertise in low-cost monitoring, 

demonstrating the utility of high spatial resolution sensing using low-cost sensors. Probabilistic 

modelling was done by the University of Sydney’s ARC Training Centre in Data Analytics for 

Resources and Environments (DARE). The University of NSW (UNSW) brought a wealth of 

background knowledge on all aspects of hydrology, and specifically led an investigation into 

recharge mechanisms of aquifers. 

The NSW Department of Planning and Environment (DPE)1 were the key audience for the work and 

seen as the main problem owner. The research outcomes of this project are intended to provide 

tools that benefit all of NSW, but particularly those functions of water management overseen by 

DPE. With responsibility for monitoring, compliance and education around water laws, NRAR are an 

important audience and provider of the problem statement. With detailed knowledge of the NSW 

water catchments and holder of important data sets, WaterNSW are an important audience and 

provider of the problem statements. 

The NSW Smart Sensing Network coalesced the partners and coordinated the project and assisted 
with funding. They also bring resourcing from the NSW Office of the Chief Scientist and Engineer. 

 
1 The agency was named DPIE over the life of the project. The name became the Department of Planning and 
Environment (DPE) after project activities ceased. 
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Key findings  

This project has demonstrated that through multi-disciplinary collaboration, better understanding 

and information can be collected than each method alone. The synergy of physical sensing and 

the use of data provides a clear example of this; through data analysis we can provide stronger 

statistical understanding of what types of physical monitoring is required and where, how sensor 

fusion can be beneficial, and an understanding of where remote methods provide the most value. 

Gaps in water data necessitate the need for more physical sensors to improve our understanding. 
A quick look at the NSW state map of water sensor distribution shows large areas not currently 
sensed or telemetered. Low-cost sensors, by which we mean sensors not bearing the high costs of 
weather stations, borehole drilling, wired communication, manual servicing, data collection and so 
on, are an option to explore as they can disengage agencies from commitments to expensive 
infrastructure. Low-cost sensors placed at strategic locations can provide data that can reduce data 
uncertainties that arise from modelling assumptions. The sensors can also be deployed as reference 
points for large-scale sensing techniques such as emerging gravity sensing methods. 

A gravity signal cannot be shielded or blocked by anything. This means information about the 
underground can be ascertained by a sensor above ground, without the need for digging, 
tunnelling, insertion of probes, chemical analysis or other contact. ANU previously demonstrated 
that a leaking water pipe underground in an urban environment can be detected with a gravimeter, 
a lawnmower-sized device above ground. Simulations of gravitational signals from realistic models 
of groundwater systems show that quantum gravity sensors can inform catchment water accounting 
through remote sensing of the total water mass changes, bring new information about the 
underground to existing data sets. 

Satellites that measure changes in the gravitational pull of water on Earth (the NASA Gravity 
Recovery and Climate Experiment (GRACE) missions) can be used to quantify changes in total water 
storage at global, continental and basin scales. Combined with other data sources (e.g., soil 
moisture and ground-based gravity observations and models), the spatial resolution can be 
improved and estimates of groundwater changes can be made. Space gravity data provide an 
effective means of observing volumetric changes in water resources state-wide in places currently 
lacking in situ measurements and goes beyond remote imaging methods which rely on processing 
of two-dimensional data. NASA have used these satellites to measure the amount of water 
diminished because of the Californian drought, to give early clues to flood danger in the Mississippi 
delta, and such data have helped find water deposits in the central Asian deserts. 

There are significant unknown losses and gains through natural processes in the water balance of 
NSW river systems. The University of Sydney (Data Analytics for Resources & Environments Centre) 
has developed a prototype formal framework to quantify these losses and the associated 
uncertainties. The preliminary data analysis has highlighted clear uncertainties in gauging data, 
groundwater space and time observations and understanding river width. In prioritising the list of 
uncertainty of physical variables this work guides investment in data collection and placement of 
new sensors, and more generally reduces uncertainty in water balance terms and reduce risk for 
decision makers. 
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UNSW showed that focussed recharge (e.g. inflows from surface water) is the main groundwater 
recharge mechanism in areas adjacent to intermittent streams, with on average one to two recharge 
events per year. In contrast, diffuse recharge of groundwater (e.g. rain percolating down through 
the soil) is more episodic, with only one to two significant events, depending on location, over a ten-
year period. This process of focussed groundwater recharge illustrates a mechanism to explain 
surface water transmission losses of flow releases in dry streams. This process also potentially 
means that direct rainfall on fields may not be a determining factor for groundwater recharge, 
especially if flow is generated by rainfall further upstream. 

Cumulatively this work has demonstrated the importance of a broad collaboration of researchers 
working in close harmony with government agencies responsible for water management. When  

water administration decisions are at their most critical, such as in times of drought (low flow use 
cases), tools being developed by researchers in universities can be translated for adoption in water 
management. 

Established hydrological experts (e.g. DPE, DARE, UNSW, WaterNSW) are able to continue to 
develop their understanding of water knowing that plentiful data, from both a cheaper proliferation 
of sensors of established physical parameters (Macquarie) and new techniques such as those 
around gravity (ANU). The inverse is also true, with those developing sensors, best able to do so 
when working side by side with those closest to the water issues. 

The input of multiple types of new sensor empowered with Bayesian inference gives real world 
credence to emerging paradigms like sensor fusion and predictive intelligence, and provides an 
excellent platform to show off advances in quantum science. 

 

Recommendations 

Continue engagement with closer collaboration of agency technical and scientific staff with 
researchers. This would enable better guidance of researchers, a better understanding of the tools 
in use, how they can be improved how advanced knowledge is used in the agency setting. 

A greater understanding of how information about water is used in agency decision making will help 
researchers direct their efforts more efficiently. This current work has been somewhat researcher 
push, this needs to be balanced in future work with industry pull. 

The data techniques, in particular the uncertainty analysis of DARE, should be applied as soon as 
possible specifically towards a real agency (NRAR and WaterNSW) problem, such as an area with 
particularly high uncertainty (20% to 50% unaccounted differences), over a stretch of river (Namoi, 
Lachlan, Macquarie and Borders Rivers have all been highlighted as examples). DARE has 
commenced this work, and given a detailed proposal, broken down into the various parameters of 
uncertainty, to complete it. 

Benefits can be realised in further campaign style (e.g. 1 to 3 year) deployment of low-cost sensor 
sets to address specific gaps, capture events and tune models. Coastal areas currently lacking data 
may be of interest. Low-cost sensors can be used as calibration points as various remote sensing 
(satellite, aircraft, drone and sentinel devices) methods are developed. Further developments in the 
uncertainty models which will help determine the most efficient deployment of sensors. 
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Tasks such as water asset management, irrigation, surface water releases and storage decisions 
may be informed by the findings on recharge mechanisms, their timing and amounts. Also models, 
predictive and otherwise, about water behaviour should consider these findings, particularly any 
models that make assumptions about how aquifer recharge is related to rainfall and other hydrologic 
processes such as evapotranspiration and soil moisture storage. 

Gravimetry field trails should be sponsored. Ideally this would require the purchase of a classical 
gravimeter (Scintrex CG-6). Several experiments are proposed: measuring the gravity signal during 
the daily displacement of water in the Snowy Mountains dams, deploying the gravimeter to survey 
a square kilometre array in the Maules Creek study area for a year, observing the gravity signal a 
series of saturated and unsaturated, layered gravel and sand pits. Site deployment of a quantum 
gravimeter would also bring exciting results. All these experiments work towards achieving 
confident day-to-day measurement of underground water using gravimetry. 

Further interrogation of satellite gravity data could aid modellers as the large-scale remote sensing 
of the total water storage is not provided by any other means. An assessment can be made if high 
flow event can be tracked and time intervals can be shortened to five days. Environmental sensing 
is one of the most often touted non-military justifications for the current expansion of Australia’s 
space capability. Stakeholders in space and water sectors should continue to liaise and long-term 
aspirations should be held for satellite assisted water monitoring. 

Water as an Asset: Considering key water bodies as assets, each with many attributes (size, shape 
and other various qualities changing over time), can simplify the way in which input from multiple 
sensors can update asset attributes tables and models, and different analysis methods can control 
and predict the water assets into the future. This draws on established asset management and 
prediction tools. 

A thorough translation of the research knowledge from universities to the agencies, could be 
undertaken over three and half years, in the vicinity of less than a million dollars per year. This figure 
is scalable; there are many smaller pieces of research and consultancy work that the universities 
can provide for considerably smaller sums and shorter timeframes. 
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How this report is structured 

Part 1 of this report describes the Outcomes. This part first gives an overview of what the combined 
effort of the collaborative project, then describes what has been achieved in each of the five sub-
projects. 

Part 2 is a Technology Roadmap to help explain to agencies and other stakeholders on how better 
sensing might be used across the state. 

Part 3 describes the Research Project in terms of traditional scientific study: Background, objectives, 
approach, results, and so on. Project requirements such as Milestones and Case Studies are 
described here, as is the governance, budget and project management. 

Part 4 provides each of the Sub-project Reports, largely unchanged from how they were submitted 
by the sub-project, authors with small edits to ensure alignment of reporting style. All these reports 
can be provided as a standalone report.  

References, glossary and appendices follow. 
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1 Part One: Outputs  

1.1 Combining new sensing and data tools to improve water knowledge 

The Where is All the Water? project has demonstrated that the latest university research into 
different methods of advanced sensing and data analytics can be brought together under a single 
umbrella to bring awareness of new tools that have real potential in helping NSW government 
agencies and other stakeholders overcome challenges in water management and decision making, 
and develop a more complete knowledge of water in NSW (see Figure 1.1). 

The project successfully deployed (despite the ravages of COVID-19) low-cost sensors in the Namoi 
catchment which provide telemetered data on soil moisture, rainfall and temperature, and other 
physical parameters can readily be added. This demonstrates that deploying new sensors to 
provide additional data can be done as part of a relatively small and simple project. 

The principle of gravity sensing of water has been shown to be possible using a traditional gravity 
meter, and that this will be improved in orders of magnitude as quantum sensors are developed. 
This frees up sensing of water from digging, boreholes, probes and other laborious methods. 

Gravity sensing from NASA satellites (GRACE) has shown water movement at a continental to state 
level. This way of remote sensing shows water flows at scale and coverage not possible by other 
means. 

Recharge mechanisms of NSW aquifers have been found to be predominantly diffuse recharge (e.g. 
via rivers), rather than focussed recharge (e.g. rain percolating through the soil), a result which may 
explain downstream water losses and can inform assumptions in water models. 

All these sensing methods can inform and be informed by data methods. A probabilistic modelling 
framework was developed to explain and quantify unaccounted differences in the NSW General 
Purpose Water Accounting Reports (GPWARs) for major rivers up to catchments. 

 

Figure 1.1: New research tools are intended to drive to a more complete state of knowledge. 
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1.2 New sensing tools and data methodologies 

This section describes five new ways of understanding water in our catchments. 

1.2.1 Low-cost sensing 

Macquarie University has installed low-cost sensors in the Namoi catchment. They generate data at 
a fraction of the cost of weather stations and other infrastructure heavy sensing systems, and utilise 
regular transmission technology (LoraWan) outside areas of domestic internet and mobile phone 
coverage. The efficiency with which they were installed indicates that increased sensing and 
telemetry of water data can be readily facilitated.  

 

 

 

 

 

 
 

 

 

 

Figure 1.2: Left: a sensor node installed in Narrabri. Right: data generated for soil moisture, rainfall, soil 
temperature and ambient temperature. 

Gaps in the current NSW water monitoring network necessitates the need for the deployment of 
more physical, telemetry-based sensors. The deployment of additional low-cost sensors in strategic 
locations throughout NSW will aid in closing the gaps in water data and further reduce data 
uncertainties.  

 

Figure 1.3: WaterNSW data clearly showing the lack of monitoring in many regions, in particular 
telemetered groundwater monitoring. https://realtimedata.waternsw.com.au/). 
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Macquarie University addressed the problem statements through developing prototype sensor 
nodes to monitor soil moisture content at differing depths, rainfall and ambient environmental 
conditions. Deploying a large number of these low-cost nodes would allow for a verification and 
greater understanding of rainfall variability and identification of events that lead up to and cause 
diffuse recharge to occur. These low-cost sensors will provide the means to fill in the gaps within 
current water data available. Current and emerging technologies have limitations in their scale and 
resolution, and this creates the gaps that cost-effective traditional sensors can satisfy. 

This research showcases the design, development and deployment of a low-cost telemetry-based 
sensing system for monitoring various environmental parameters including soil moisture and 
temperature at an array of depths, rainfall and ambient conditions from any remote location 
throughout NSW. The Macquarie University workstream aims to aid in decreasing data uncertainties 
through developing and deploying the proposed low-cost systems to provide an increase in the 
spatial and temporal resolution of data that is currently available. The collected sensor data is 
transferred and stored in the cloud periodically through the Long-Range Wide Area Network 
(LoRaWAN) communication protocol. Adaptation and data collection from the deployment of many 
proposed low-cost sensor nodes in targeted locations throughout NSW will provide a major 
breakthrough in addressing current gaps in the knowledge of water location and movement 
throughout the state. 

About Macquarie University Engineering  

Macquarie’s University’s engineering researchers are dedicated to creating technological solutions 
to problems relevant to society’s health and environment – solutions that expand the capability of 
people to achieve their goals. They have research strengths in electromagnetic and antenna design, 
energy conversion and management, integrated wireless communication systems, nonlinear 
electronics, guided-wave optics and photonics, very-large-scale integration, and wireless 
communications and networking. 
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1.2.2 Local gravity sensing  

The ANU simulated a real-world test case to investigate the gravitational signals from near surface 
groundwater. This feasibility study showed that the gravitational signals produced by recharge to 
the groundwater systems will be measurable by the next generation of portable quantum sensors. 
Measurement campaigns utilising these sensors will be able to inform the location of water and in 
conjunction with exiting sensors and boreholes, improve knowledge on both soil moisture, 
evapotranspiration rates and groundwater location. 

ANU also provided larger test worlds based on slope data for satellite gravity (GRACE) modelling. 
This helped to explore the feasibility of space based gravimetry surveys as a water monitoring 
technique. 

They focused specifically on the ground water aspect using gravity signals. The amount of water 
that is leached from a stream or the surface into the ground was built as a toy world and the 
expected gravitational signals were simulated. Measurements of gravity over time will help inform 
water release agencies the expected loss and gain of water resources to and from the ground and 
through evapotranspiration. 

Uniquely, since gravity is a mass-based signal, with sufficient knowledge of the underground system 
and the appropriate sensor, gravity has the potential to be a catch all measurement for water, able 
to cumulatively see the water table, soil moisture and surface water. 

 

 
 

 

 

Figure 1.4: Left: arial map of the Y-shaped study area of Middle Creek between Gunnedah and Narrabri, 
NSW. Right: Plot of simulated differential gravity signal (gz) with a large amount of surface, dam and 
groundwater in the system. Simulated survey done at 50m above ground level (drone). 

 

About ANU Department of Quantum Science and Technology 

The Department of Quantum Science and Technology pursues basic scientific experimental and 
theoretical research in the quantum mechanics of many body systems and translates basic research 
to devices, applications and commercialisation. At present, the department is focussed on the 
quantum mechanics of photons, cooled atoms, NV centres, quasi-particles and solid state rare earth 
systems to investigate the fundamental physics of measurement, squeezing, entanglement, and 
quantum control among other many-body phenomena and the translation of those ideas and 
developments to applications in communication, computing and sensing. 
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1.2.3 Satellite gravity measurements of Australian water  

Satellite gravity measurements clearly show the movement of total water, that is ground water, 
surface water and soil moisture, through New South Wales 

A pair of NASA satellites orbiting Earth are sensitive to changes in the strength of the gravity field, 
indicating changes in mass of water, ice, earthquake deformation and mantle convection. In 
Australia, changes in mass are dominated by hydrological processes. NASA have used these 
satellites to measure the amount of water diminished because of the Californian drought, give early 
clues to flood danger in the Mississippi delta, and helped find water deposits in the central Asian 
deserts (https://www.nasa.gov/mission_pages/Grace/). 

In the Where is All the Water? project, assessments were made of the accuracy with which a realistic 
signal of changes in water volumes could be recovered from space gravity data when estimated at 
a ~200x200 km scale. Maps were produced of changes in total water storage during heavy rain 
events in 2019 as displayed in Figure 1.5. (See Figure 4.26 for larger plots and other years). 

Interactions with DPIE led to the investigations of whether flood waters in southern Queensland can 
be tracked into NSW rivers. 

Space gravity data provides over-arching constraints on how much water resources have changed 
in the landscape, integrated over groundwater, soil moisture and surface water stores. These 
constraints can be coupled with in situ measurements and/or water models to improve the accuracy 
of the knowledge of how much water is present in any location and, therefore, what 
storage/releases are appropriate. This can help inform agencies to manage to capture, store and 
release water. (i.e the WaterNSW problem statement given in section 3.2). 

 

 

Figure 1.5: Total water storage across eastern Australia February to July 2019 with January 2019 as the 
baseline. Hydraulic activity such as the dry season in the Top End (darker red indicating a reduction in 
water volume), or the flow of water from monsoonal storms in Queensland (darker blue), down the 
Channel Country to NSW, can be observed. 

 

Space gravity observations may provide a means to determine whether the unaccounted water has 
been either removed from the river system(s), has evaporated, or has replenished groundwater 

https://www.nasa.gov/mission_pages/Grace/
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stores as it flowed downstream. Evaporation would cause a loss of mass, removal would relocate 
the mass beside the river while replenishment would leave the mass behind as the flow moved 
downstream. The difficulty of using space gravity observations for this purpose is one of spatial 
resolution: mass estimates are simply not of sufficiently high spatial resolution to resolve these 
signals. The possibility of using actual signals in the measurements (rather than estimates over 
200x200 km) is investigated in this report. This can help inform agencies to explain unaccounted 
for differences. (i.e. the NRAR problem statement given in section 3.2). 

Changes in groundwater can be estimated through either a simple subtraction [total water storage 
minus (soil moisture + surface water)] or derived more accurately by assimilating into hydrology 
models the total water storage estimates (and shallow soil moisture) from remote sensing data. This 
improves knowledge of ground water and aid groundwater decision making. (i.e the DPIE problem 
statement given in section 3.2). 

The significance of the work undertaken in this project is that satellite gravity data can provide 
information at a broad scale, which is otherwise typically not available. 

 

About ANU Institute for Water Futures 

The Institute for Water Futures (IWF) leads research to quantify and understand change and enable 
action in Australia and beyond. Though our work we grow capabilities across the water sector to 
inform decisions that anticipate our increasingly complex uncertain water futures. 
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1.2.4 Data uncertainty analysis  

The data analytics sub-project produced a probabilistic modelling framework for the water balance, 
useful up to catchment scales, for the purpose of making water management decisions at the state 
level in NSW under uncertain conditions. 

A pilot Bayesian framework was developed that quantifies uncertainties in the components that 
contribute to the water balance in stretches of the river and the interaction between groundwater 
and surface water. This framework was tested to identify processes that have the highest 
uncertainties in both space and time, which can assist in decisions on placement of new sensors 
and identifies gaps in current data and knowledge. 

Different inversion options for gravity data were tested and it was identified that this problem is not 
well constrained and needs more research and data analysis to draft models of the underground. 

The framework developed addresses in particular the need for agencies to have better tools to 
explain unaccounted for differences. (i.e. the NRAR problem statement given in section 3.2), by 
identifying parts of the water balance with the highest uncertainty. Better understanding of 
uncertainty feeds into better decision making in all parts of the river and groundwater system and 
can guide placement of novel sensors. 

 

Figure 1.6: Top left: Stretch of river with components of uncertainty. Bottom left: Observed data may 
come from a range of sources, examples include remote sensing and weather stations. Right: The 
model described how a component of the water balance, in this case evapotranspiration (ET), can be 
analysed considering several parameters. The techniques lead to a reduction in the uncertainty as 
represented by the narrowing of the green distributions to the right of the figure. 
 

About DARE 

The University of Sydney’s ARC Training Centre in Data Analytics for Resources and Environments 
(DARE) will provide PhD candidates in world leading data science through an innovative, 
collaborative program between industry, government and academia. All students will undertake a 
cohort-based training program in data science prior to selecting a specific data science project and 
domain. Data science research projects will be applied against real world challenges through an 
industry placement program with one of our Partner Organisations.  
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1.2.5 Hydrological recharge mechanisms  

The project was supported by vast experience in measurement of NSW water resources. There was 
considerable background knowledge of hydrogeological conceptual models and data. The project 
had access to data from the NCRIS Groundwater (GW) Infrastructure field sites as well as information 
from NSW-DPIE and NRAR and broad general groundwater knowledge. This provided the ‘ground-
truthing’, guidance and benchmarks for the new sensing methods. 

Specifically, this sub-project showed that focussed recharge is the predominate groundwater 
recharge mechanism in areas adjacent to intermittent streams rather that diffuse recharge, 

The existing NCRIS Groundwater data sets provided timeseries of over 10 years of groundwater 
levels from various bores at two locations Wellington and Maules Creek. From this UNSW was able 
to determine that significant diffuse recharge events have happened about twice in the last decade, 
whereas focussed recharge from streams happens once or twice a year. While bores can give us 
insights into groundwater processes in the saturated zone, a knowledge gap exists around water 
movement through the unsaturated zone. Collaboration between UNSW and ANU has framed early 
thinking about use of gravity sensors and soil moisture sensors to trace water movement in the 
subsurface. 

The processes below the intermittent Middle Creek illustrate the mechanism of surface water 
transmission losses (e.g., focused groundwater recharge) for flow releases in dry streams. 
Conceptually the location of the groundwater table at the time of the release partly controls the 
amount of loss.  E.g., the lower the groundwater table (the greater the unsaturated zone), the greater 
the surface water losses. This can help inform agencies to make decisions around the capture, store 
and release water. (i.e the WaterNSW problem statement given in section 3.2). 

 

 

Figure 1.7: Representation of focussed recharge. Left: the aquifer in a region is represented below the 
dotted blue line. Right: Recharge of the aquifer has been shown to be more frequently attributable to 
focussed recharge from adjacent streams, rather than from diffuse recharge of rainfall over the terrain 
above the aquifer. 

 

This project has quantified aspects of groundwater recharge and determined the relative 
importance of the different mechanisms of recharge at the NCRIS Wellington and Maules Creek 
catchments. These insights, which in principle are applicable at other similar semi-arid/arid sites, are 
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important for sustainable groundwater management. This provides knowledge of ground water 
resources, what groundwater is influenced by and influences on; and thus aid more robust, timely, 
scale appropriate decision making. (i.e. the DPIE problem statement given in section 3.2). 

 

About the UNSW Water Research Centre 

The Water Research Centre (WRC) is an international leading university centre that provides 
multidisciplinary research in water resources, engineering, management and the development of 
tools for environmental management and sustainability for improving aquatic and atmospheric 
environments. With its two research locations; WRC at the Kensington campus and the Water 
Research Laboratory (WRL) located at Manly Vale, operates as an externally funded University of 
New South Wales (UNSW) research centre within the School of Civil and Environmental Engineering. 
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2 Part Two: A Technology Roadmap for better understanding 
of water assets 

The project has come about from a number of starting points; ministerial decree, the establishment 
of an Australian Research Council training centre (DARE), the release of the report from the Office 
of the Chief Scientist and Engineer, Review of water related data collections, data infrastructure 
and capabilities (2020), and the emergence of the NSW networks, the NSSN being one,  as valuable 
respondents to government agency challenges. 

This project was proposed as an exploratory project. In the parlance of Technology Readiness 
Levels (TRLs) (see section 0) we were observing basic principles and formulating concepts (TRL 1 
and 2). This project has taken some aspects along to proof of concept (TRL3) right through to 
demonstration in relevant environments (TRL6, in the case of low-cost sensing). 

The next step in the roadmap is to work closely with agencies to develop a prototype asset 
management tool that best suits their needs. This allows us to guide further development efforts 
towards validation and demonstration in an operational environment (TRL5, 6 and 7). 

2.1 Before the project: gaps, limitations, and unknowns 

The management of water in Australia is complex with myriad stakeholders across jurisdictions. In 
NSW. In NSW three of the agencies with responsibility for water management are the WaterNSW, 
Natural Resources Access Regulator and the Department of Environment and Planning (formerly 
DPIE). While three agencies are proud to be world leading in their processes and outcomes, the 
harsh Australian environment, climate change and population growth mean there is always a need 
to innovate, overcome challenges and optimise use resources. 

In a series of workshops early in the collaboration in 2021, the agencies gave presentations to 
demonstrate where their needs were. These were summarised thus:  

• WaterNSW: How does this research help them to capture, store and release water: The right 
amount of water, in the right place, at the right time. 

• NRAR: How can the research address the issue of the “25%” unaccounted for water in some 
of the water balances. 

• DPIE: How can this provide data to improve knowledge of ground water resources, what 
GW is influenced by and influences on; and thus aid more robust, timely, scale appropriate 
decision making. 

The potential sensing modalities are potentially infinite and listing every type of water sensor in use 
in NSW is likely to be futile. However an overall impression can be gained of what new technologies 
currently under research may contribute. The NSW Office of Chief Scientist and Engineer undertook 
a review of water data in NSW, see Figure 2.1. From this, we can understand the types of situations 
where water data is being retrieved from. 
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Figure 2.1: Water data in NSW. Review of water-related data collections, data infrastructure and 
capabilities, July 2020, OCSE [1]. 
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2.1.1 Water as an asset 

Water entities can be considered as assets, with a range of attributes, including, quite simply, 
volume. Attributes of the asset can be updated as new data comes in.  The asset database can be 
built up and developed into a dynamic database with temporal information.  Different and new 
sensing modalities can easily be included as they bring updated information about the asset 
attributes. 

Sydney Water successfully used such an approach for reliable identification and prediction of at-
risk pipes [2] [3].  A similar approach could be used to identify at-risk (e.g. depleted or overflown) 
water assets. This could be further augmented with uncertainty analysis to provide the probability 
of risk. 

An asset management approach also permits consideration to sensor fusion, whereby the 
understanding of assets comes from disparate sensors, using the data analytics such as Bayesian 
techniques that can help reduce uncertainty. Such approaches are being developed in defence and 
medical technology applications. 

 

 

Figure 2.2: Sensor fusion and data analytics to improve understanding of assets. 
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2.2 Advancements of WIATW sub-projects 

The progress of the sub-projects can be visualised using the Bayesian framework developed by 
DARE. This initially uses existing Data to develop the Model. It is strongly linked to the process 
conceptualisation in the model (including discussions with UNSW) for both the river system 
framework and the gravity inversion work. For the gravity inversion, DARE has completed testing 
using synthetic data, which has led to identifying gaps in understanding of the conceptualisation of 
underground structures. A proposal to refine the conceptualisation of underground structures is an 
ongoing discussion among research partners including ANU and UNSW. 

 

Figure 2.3: Where is All the Water? project Bayesian framework. This considered the project in terms of 
key aspects of Model, Data, Testing/ Reasoning and Scenarios and Decisions. 

 

Low-cost sensing 

The Macquarie University sub-project plays a strong role within the project model. As the modelling, 
simulations and resulting decision making are all dependent upon the initial data utilised, it is 
important to have the right amount and type of data. Macquarie aims to obtain and contrast relevant 
data that is of a high temporal and spatial resolution which can then be utilised for modelling and 
decision making.  

The Macquarie sub-project fits into the direct measurement role, providing ground-truthing real-time 
data that can be compared with or utilizes as a calibration point for other types of remote sensing. 
Based on the output and decision making from the modelling, changes to the position and/or 



 

nssn.org.au 

temporal resolution of data being collected from the developed systems can be adjusted as 
required. 

 

Local gravity sensing  

Have simulated indirect measurements of gravity based on a real system provides a new source of 
data. 

 

Satellite gravity sensing 

Indirect measurement: the space gravity data provides indirect estimates of changes in total water 
storage, averaged over 200x200km regions. This quantity cannot be measured by any other 
technique at these large scales; therefore, this is a unique measurement. It provides information at 
a broad scale, permitting the regional/basin-scale patterns of water movement to be interpreted. 

Experiment/simulation/defining parameters: The space gravity estimates of total water storage can 
feed into the testing/reasoning components of the Roadmap. New parameters – or, at least, new 
constraints on existing parameters – need to be added into model state calculations to ensure that 
the integrated changes in model estimates of water quantities match the broad-scale average 
changes obtained from the space gravity data. 

 

Data uncertainty 

The pilot applications of the Bayesian framework from DARE also fit into the Testing/ Reasoning. 
The results of the pilot will inform updates to the model, and as indicated, the results highlight gaps 
in the data collection. Once the models have been refined, these can be used for decision making 
(conditional on the data and the specific model realisation). However, the Bayesian approach is 
strongly linked to the idea that a model can only be as good as the data and the current 
understanding. Therefore, feedback from the stakeholders using the model will generate further 
improvements in models, data and experimentation. Agile management approaches will allow this 
continual optimisation.  

 

Hydrological recharge mechanisms 

A key contribution of UNSW to this project is groundwater data of high spatial and temporal 
resolution from two NCRIS sites at Wellington and Maules Creek that provide direct measurements 
of groundwater levels over a 10-year period and hence provided ground-truthing for the wider 
project. This data has formed the basis of process and site conceptualisations that have informed 
our conclusions about groundwater recharge. This data has also informed the conceptual model 
and physical parameters for the model testing for local gravity sensing (Sub-project 2). 
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2.3 Operational use 

The following paragraphs discuss how the techniques can be used by the relevant agencies. 

Low-cost sensing 

Utilizing the LoRaWAN Network – which stands for long range Wide area network, this 
communication protocol allows for these low-power sensor nodes to communicate small amounts 
of data at regular periods at very low power consumption. Using LoRaWAN therefore means we can 
deploy these systems anywhere within NSW and maintain their power via the use of small solar 
panels. Further information on their specific use cases is highlighted in the report. 

 

Local gravity measurements 

The sensors needed to deploy this technology terrestrially and on small scales are still in 
development. 

Once developed gravitational surveys could be used to monitor interesting or problem areas. For 
example, if a particular catchment consistently has less water in it than expected, a number of 
gravitational surveys could be done and the mass balances calculated and compared to existing 
models for that catchment. The extra data source can be used to identify where water is been lost 
to ground water recharge or to evapotranspiration. 

 

Satellite gravity measurements 

For large scale use cases the data from satellite gravity missions can provide high quality estimates 
of changes in total water storage at large scale. At spatial resolution of ~350-400 km these 
estimates will be uncorrelated, whereas as smaller spatial resolution of ~200 km some 
smearing/leakage of signal occurs spatially. 

In low flow use cases the data from satellite gravity analysis has a sensitivity of ~20 mm water 
thickness across the spatial region of the estimate. Provided the changes in total water storage 
exceed this magnitude, the changes would be detectable.  

For high flow use cases there is no upper bound on the magnitude of signals that can be detected 
and quantified from satellite gravity missions. 

 

Data analytics 

The key difference between existing technologies and the approach developed by DARE is that the 
Bayesian framework through Bayes formula explicitly includes the quantification of uncertainty of 
all sources of uncertainty in the model. The framework applies to all the possible use cases, 
although the different elements of the framework and the choices of priors will differ by use case. 
In all cases, there is a need for investment (as outlined in the DARE milestone 1 report) to create a 
workflow from data to a model that can be used for operational applications. 
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Recharge Mechanisms 

In the high flow use-case, especially after a dry period without surface flow, in intermittent streams 
the groundwater table will be lower than the stream bed (i.e., disconnected). When stream flow is 
generated upstream (i.e., a dam-release or rainfall), focussed recharge will occur with the surface 
water infiltrating down to the water table and laterally away from the stream. This work has shown 
that this is the predominate recharge mechanism for intermittent creeks in semi-arid/arid regions. 
This potentially means that direct rainfall at such sites may not be a determining factor for 
groundwater recharge, especially if stream flow is generated by rainfall further upstream, as is the 
case with the Middle Creek site.  

It is important to realise that this does not happen to the same extent for perennial streams where 
the surface water and groundwater levels are in a dynamic equilibrium. For perennial streams a flow 
release may lead to bank storage effects with the stored water returning to the stream after the 
flow-release (unless large groundwater abstraction is happening at the same time). This same 
behaviour can be observed in intermittent streams during periods of sustained surface water flow, 
as the groundwater table is then connected to the stream. 

 

2.3.1 Technology review 

Agencies have requested a comparison of the techniques for better water management in 
comparison with those currently in use. Discussion of the various sensing techniques has been 
provided in the previous Milestone reports [4] and is discussed as part of the final report from 
Macquarie (see section 4.1.3). 

The selection process of the technologies to investigate had several strands as described in the 
introductory remarks from the NSW Chief Scientist and Engineer (see Foreword, pg. 2). There was 
a Ministerial directive leading to the major NSW Water Industry Innovation Workshop in October 
2019 attended by over 100 delegates. From this a longlist of areas of investigation was presented 
to the Water CEO, Jim Bentley. A shortlist of four priorities (projects about Avoiding Fish Kills, Flood 
Plain Harvesting, and Data Management were the other three) was considered before a consensus 
was reached that the Where is All the Water? project would be the most informative. 

The NSW Smart Sensing Network (NSSN) has been working at the vanguard of translating sensor 
technology from research to the assistance of industry and government since 2016. The NSSN 
follows the latest research and technology worldwide in physical sensing, such as chemical and 
optical techniques. The inclusion of the low-cost sensing sub-project in this project allows the 
versatility for any novel developments in physical sensing to be adapted where feasible. NSW is 
also embarking on a Space agenda and there is a state-wide drive into Quantum science. The 
inclusion of the satellite gravity and low-cost sensing sub-projects address these domains 
respectively. No conversation about sensing is complete without a consideration of how the data is 
processed. While many analytical tools, the reduction of data uncertainly by Bayesian inference is 
one of the most exciting. 

In terms of readiness the data techniques are ready to be applied to problem right now. Likewise, 
the timing of deployment of low-cost sensors will be dependent on financing, planning and logistics, 
with the actual sensors themselves being ready now. Further analysis of satellite derived water data 
and calculations of the utility of quantum gravimetry can commence as soon as possible. 
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Deployment of special Australian satellites for environmental sensing is due within 10 years, while 
commercially available quantum devices suitable to this problem are seen in five-year horizon.  

The low-cost sensing proposed by Macquarie university is not beholden to any particular design, 
manufacturer or style of sensor. The nodes can adapt the most cost-effective transducer, and use 
telemetry provided by the most suitable transmission protocols to the local context. 

Satellite derived data will of course be related the cost of satellites. Sending a dedicated sensor 
into space is an exercise in the order of tens of millions of dollars. Once installed vast amounts of 
data, with global coverage, including detailed knowledge of NSW and the MDB is forthcoming. 
Given Australia’s push into space, agencies should not shy away from the idea of commissioning 
special sensors.  

Cubesats2 have given indication payloads might be in the order of $100,000s to deploy, suggesting 
dedicated satellite sensing of the NSW water environment may be within agency budgets. The 
SmartSat CRC3, CSIRO Aquawatch [5] and the Waratah Seed Mission4  should also be followed.  

Classical gravity sensors, gravimeters, are now routinely available from a number of suppliers. They 
are used for many scientific and industrial uses, particularly mining. The preferred gravimeter is in 
the order of $150,000 (Scintrex-CG6). 

Data analytics does not require the installation of hardware, though data engineers are a skill set 
trade attracting premium salary.  

Currently the most common method for monitoring ground water is through the drilling of bore 
holes. This method is expensive; the global rule of thumb is that a borehole with pump (no sensing) 
costs approximately $US10,000. The Australian experience is that they are typically between 
$A5,000 to $A20,000. The cost of putting a sensor in an existing borehole is relatively cheap, 
though telemetered sensors are rare. Labour and travel costs of retrieving data from remote sites 
adds up.  It is also highly discreet; to do an area survey a grid of boreholes would need to be dug 
and monitored, additionally this method is not typically sensitive to water retained in the soil and it 
invasively disturbs the soil structure, altering porosity and other parameters around the bore hole 
itself. Gravity surveys comparatively are non-invasive and can be performed anywhere, been able 
to remotely sense changes in water mass, regardless of conditions such as salinity, ground 
hardness, etc. This makes these sensors relatively unique in the field of hydrology and ideal for 
measuring water volumes. 

2.3.1.1 Advantages of new sensors and data tools 

Sensors are operating at very different area and length scales (as mentioned in the Milestone 
reports) and the only way to get the full picture is to find a way to combine all of these. Low-cost  in-
situ sensors are the most crowded space (lots of companies and the likes of CSIRO’s SENSEI playing 
here), but these have nothing like the scalability and ability to cover wide areas offered by gravity 
sensors. 

Figure 2.4 is a 2-axis comparison of sensing technology that considers scalability and resolution, 
while table Table 2.1 provides a summary of different sensor types. 

 
2 https://www.cubesat.org 
3 https://smartsatcrc.com/ 
4 https://www.waratahseed.space/ 

https://www.cubesat.org/
https://smartsatcrc.com/
https://www.waratahseed.space/
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This exercise can only fully be completed when agencies work closely with researchers to elicit the 
scope, parameters and criteria they currently use for sensing selection.  

 

Figure 2.4: Competitor analysis of scalability and resolution for various sensing modes.  

 

Table 2.1: Summary of sensors types.  indicates a positive or enabling attribute,  indicates a negative 

or constraining attribute, and  a neutral attribute. 

Technology  Accuracy Resolution Scalability Cost Frequency Maturity 

Boreholes 
      

In-situ sensing 
(traditional)       

Remote sensing (drones, 
robots)       

In-situ sensing (low-cost) 
      

Quantum/gravimetry 
      

Satellite gravimetry  
      

Data analytics 
      

 

A note on cost 

For each of the sensing modes researchers will need to compare the utility of the data produced 
with the cost of acquiring that data. This requires more detailed information from the agencies of 
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the types of sensors they are using, how they are being used and the various up-front and ongoing 
costs of accessing and analysing the data. 

Agencies must work with researchers and provide the criteria including scope, parameters and 
other details of how they cost sensing presently for fair comparison to be made. 

2.4 Future phases 

2.4.1 Low-cost sensing 

In the immediate term, the next step is to develop many more of the prototype nodes and deploy 
them at a site of interest. This could include the land offered by The University of Sydney Narrabri 
L’lara farm, or another site in collaboration with the deployment of gravity sensors with ANU. This 
would provide an outcome of achieving 20 – 30 deployable sensor nodes monitoring soil moisture 
and rainfall to collect data and reduce uncertainties. 

In the short to medium term, further research and analysis regarding the inclusion of additional 
sensors would be the next goal. As we are currently monitoring rainfall and soil moisture quantity, 
the inclusion of quality sensors would be appropriate. For example, measuring rainfall quality 
(hardness, pH etc.) and/or soil quality which could then be analysed to potentially provide a 
relationship to the moisture content. 

At Macquarie university we specialise in developing low-cost sensors, and the inclusion of these 
could provide a significant increase in the amount of information each of these nodes provide. 

Once many sensor nodes have been deployed and are confidently operating and collecting data in 
an accurate and useful measure. Deploying these nodes at strategic locations within a large-scale 
testing area and using them as calibration points for large-scale remote sensing is the long-term 
outcome. These nodes could be easily deployed as calibration points for sensing parameters such 
as rainfall, temperature and soil moisture (e.g. using mobile cell-tower signals to determine the 
amount of rainfall in an area of interest). 

 

2.4.2 Local gravity measurement and modelling 

2.4.2.1 Gravity field tests 

The next stage is to go into the field and test the model developed in this project. By preforming 
iterative surveys and long time based single point surveys of gravity the signals produced can be 
compared to that of the simulation to further inform the models of groundwater and 
evapotranspiration. Surveys will ideally be taken over a period of months to years, incorporating 
both low flow and high flow events to show significant changes in groundwater. 

These surveys can be initially preformed with existing classical gravimeters but would also benefit 
from using some of the prototype quantum sensors in development, especially to recalibrate the 
classical sensors and reduce drift. 

Further deployment of this technology depends on both the results of field trials and the ongoing 
development of these quantum sensors. Initial field trials will be ground based with larger sensors 
moved and placed manually. With the development of smaller, lighter quantum sensors the 
feasibility of a drone based aerial survey becomes an interesting prospect. Sensors deployed on 
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drones will have the ability to dwell and measure gravity close to the ground and make 
measurement surveys across a grid automatically. 

 

2.4.2.2 Gravity signal inversion experiment 

Much could be garnered from an experiment to measure the gravity signal of some highly controlled 
source. In the first four experiments of Figure 2.5, there is absolute confidence that the two states 
will give a different signal. Experimental variables such as volume, mass, ratios could be varied to 
understand the gravity signal, eventually leading to more complex situations like experiment 5. 

 

Figure 2.5: A series of experiments around the inversion of the gravity signal. Measurements from the 
gravity sensor (red disc) would be taken from an array of positions on top of the box. The water and 
sand + water conditions would be varied, with increasing complexity, including more realistic riverbanks. 

 

2.4.2.3 Gravity signal of water bodies experiment 

Another interesting experiment to try will take gravimeters to the sites of regular massive changes 
in water volume, such as the Snowy Mountains hydro-electricity reservoir.  Learnings from this more 
controlled situation, could then be taken to a more complex environment, such as a dam release. 
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Figure 2.6: Measuring gravity changes in Snowy mountains dams, which have regular known changes 
of considerable mass, will help to understand the gravity change of water in unknown situations. (Photo: 
https://www.snowyhydro.com.au/). 

 

 

2.4.3 Satellite gravity measurements 

Stakeholders can benefit from this work immediately through the analysis and interpretation of the 
quantification of changes in water at the 200-400 km scale. The maps provided here from the 
analysis of GRACE Follow-On data show clearly the propagation of large rainfall events across 
Queensland and NSW in 2019 and 2020. Significant differences are evident between the two years. 

Future work could increase the spatial resolution to enable interpretations at the catchment or sub-
catchment scale through: 

• The assimilation of changes in total water storage (and satellite-based measurements of soil 
moisture) into land surface models. This permits the space gravity data to be down-sampled 
– yielding higher spatial resolution – and also to separate the changes in water into different 
layers (groundwater, soil moisture, surface) 

• The assessment of whether the inter-satellite observations along the ground track of the 
satellites can permit the tracking of high flow data through river systems, 

• The creation of estimates at time intervals shorter than monthly. The ground tracks repeat 
every ~5 days; therefore, more frequent temporal estimates could be generated, although 
a more coarse spatial resolution would likely become necessary. 
 

2.4.4 Data uncertainty 

The general approach developed by DARE: a probabilistic modelling framework for uncertainty 
quantification using Bayesian analysis can be applied to several different “accounting systems” and 
observation networks in natural resources, including groundwater monitoring, soil carbon 
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monitoring, water quality monitoring. We demonstrated this for the gravity signal inversion problem, 
which quickly highlights the main limitation in the conceptualisation of the underground. Both pilot 
approaches developed in this project will need expanding to become operational  

Specifically:  

1. As indicated, the key development need for the gravity signal inversion is a better model of 
the underground before the work outlined in the DARE milestone 1 report can be 
undertaken. The work by Fuentes et al. (2021)  can serve as a starting point to develop a 
state-wide model of the underground where DARE would collaborate with ANU and UNSW. 
This model of the underground would have applications across state governments in natural 
resources, as well applications based on the inversions of gravity signals at both local and 
large scale. 

2. To further develop the probabilistic modelling framework to an operational a further 3 
phases would be required. Phase 1 would be to expand the pilot to a full river-groundwater 
system in one catchment as outlined in the milestone 1 report.  Phase 2 would involve 
testing, developing training and refinement of the framework with stakeholders. Finally, 
phase 3 would involve operationalising the framework so it can be applied as a workflow 
by stakeholders. 

3. The outcomes of phase 1 from 2) (above) can be used to guide testing of cheap sensor 
placement (MQ) and data collection campaigns (ANU), as this will for the river system 
indicate the greatest uncertainties in time and space. 

More generally there is an opportunity in two additional areas: 

1. Improving the communication of uncertainty and risk as part of the operational activities at 
DPIE, WaterNSW and NRAR. It is clear that there is a need to improve the “common 
language” around uncertainty between scientists at DARE and scientists and managers at 
the stakeholder organisations and development of communication to the public. 

2. Generalised auditing of the current data collection networks for all stakeholders using an 
uncertainty based approach. This is initially purely a historical data analysis, but can be 
extended to include simulation or prediction of future data collection network 
improvements. 

 

2.4.5 Groundwater recharge 

While we have been able to draw conclusions about groundwater recharge timing and thresholds 
and the relative importance of the different mechanisms through this work, quantifying recharge 
amounts (mass) and determining the spatial variability of recharge remains a challenge. Measuring 
soil moisture in a reliable way at various spatial locations at one site will provide further insights into 
the spatial and temporal variability of groundwater recharge and ultimately inform sustainable 
management of groundwater and provide insights about how the generation of this resource may 
change with climate change. This can potentially be achieved using low-cost sensors (as with Sub-
project 1) to create a network of monitoring points at a site and/or by using gravity sensors (Sub-
project 2). The use of gravity sensors for measuring soil moisture does have the advantage of not 
disturbing the subsurface potentially leading to more reliable measurements of soil moisture. But 
most importantly, timelapse measurements of gravity directly measures the change in mass in the 
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soil profile without the additional uncertainties of estimating porosity, specific yield and other soil 
parameter typically needed for traditional recharge estimates. 

A ‘stretch goal’ would be to increase the capacity of and reduce costs of radio-tracer analysis 
(Carbon-14, tritium, etc.) so that they become routine measurements. An alternative would be to 
develop sensor methods to measure these continuously and in-situ (very sci-fi at this stage). 
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2.4.6 Summary of future work 

Table 2.2: Summary of suggested future activities. 

Activity name Description Lead partner/s Resources 
and timing 

0.1 Technology 
review  

Comparison of current sensing technologies 
in use across the state by various agencies, 
with a range of off the shelf and possible 
future technologies still in the research stage 

DPIE, MQ $50,000 
 
Short term 

0.2 Water 
research 
capability 
review 

Review of research capability across all 
NSW/ACT research organisations 

NSSN $50,000 
 
Short term 

1.1 Proliferation 
of low-cost 
sensors 

Develop many more of the prototype nodes 
(e.g. 20 to 30) and deploy them at a site of 
interest. Combine with gravity sensors  

DPIE, MQ, ANU $150,000 
 
Short term 

1.2 Additional 
sensing 
parameters 

Add additional parameters including 
hardness, pH, turbidity, oxygen etc.) and soil 
quality 

WaterNSW, MQ $150,000 
 
Mid term 

1.3 Wide area 
sensor 
deployment  

Deploying low-cost sensor nodes at 
strategic locations over large-scale (>100s 
km) testing area and using them as 
calibration points for evolving remote 
sensing as being provided by drones, 
planes, satellites and sentinel devices. 

MQ, ANU, DPIE, 
WaterNSW 

$300,000  
 
long term 

2.1 Gravity 
meter 
purchase 

Quantum sensing field experiments. 
Purchase/hire of gravity meter 

ANU, UNSW $370,000 
 
Short term 

2.1.1 Inversion 
experiment 

Inversion experiment. Gravity sensor 
measuring various water soaked 
configurations of a 8m3 volume  

ANU, USYD, DPIE $150,000 
 
Short term 

2.1.2 Snowy 
mountains 
experiment 

Snowy mountains experiment. Install gravity 
meter at a hydroelectricity reservoir with 
mass daily changes in water.  

ANU, DPIE (SMEC) $150,000 
 
Short term 

2.2 Gravity 
groundwater 
survey 

Iterative array surveys of a groundwater site, 
such as Maules Creek for several years 

ANU, UNSW $450,000  
Medium 
term  

2.3 Quantum 
sensors for 
water 

Further development of quantum sensors. A 
contribution could direct research towards 
water and environmental use.  

ANU $500,000 
  
long term 

3.1 Enhancing 
models with 
satellite data 

Assimilation of total water storage from 
satellite data into water models. Develop 
higher spatial resolution.  

ANU $150,000 
 
Short term 

3.2 High flow 
data 

Assessment of whether the inter-satellite 
observations along the ground track of the 
satellites can permit the tracking of high flow 
data through river systems 

ANU $150,000 
 
Medium 
term 
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3.3 NSW space 
and satellite 
development 

Follow the general development of space 
and satellite progress in NSW, including 
Cube Sat, Smart Sat (CSIRO), SmartSat CRC, 
and Waratah Seed particularly with regards 
offerings for water and environmental 
sensing. 

DPIE, ANU,  $N/A 
 

Long term 

4.0 
Communicating 
uncertainty 

Improving the communication of uncertainty 
and risk between practitioners. 

USYD, DPIE, 
WaterNSW and 
NRAR. 

$N/A 
 

Short term 

4.1 Modelling 
and sensing of 
the 
underground  

Improve knowledge of the underground, in 
particular porosity, density at a scale and 
resolution to better interpret the signals of 
gravity sensors. 

ANU, MQ, USYD, 
UNSW 

$100,000  
  
Short – mid 
term 

4.2.1 
Probabilistic 
modelling 
framework: P1 

Phase 1: Expand the current pilot to a full 
river-groundwater system in one catchment 
as outlined 

USYD, NRAR, DPIE, 
WaterNSW 

$100,000 - 
$200,000 
Short term 

4.2.2 
Probabilistic 
modelling 
framework: P2 

Phase 2: Testing, developing training and 
refinement of the framework with 
stakeholders. 

USYD, NRAR, DPIE, 
WaterNSW 

$100,000 - 
$200,000 
Mid term 

4.2.3 
Probabilistic 
modelling 
framework: P3 

Phase 3. Operationalising the framework so 
it can be applied as a workflow by 
stakeholders. 
Advise on low-cost, gravity and quantum 
sensor deployment. 

USYD, NRAR, DPIE, 
WaterNSW, MQ, 
ANU 

$100,000 - 
$200,000 
Long term 

5.1 Soil 
moisture for 
recharge 

Measuring soil moisture to provide further 
insights into the spatial and temporal 
variability of groundwater recharge 

UNSW, MQ $150,000 
 
Short term 

5.2 Gravity and 
timelapse for 
recharge 

Timelapse measurements of gravity to. 
measures the change in mass in the soil 
profile without the additional uncertainties of 
estimating porosity, specific yield and other 
soil parameters 

UNSW, ANU $150,000 
 
Mid term 

5.3 Radio 
tracer analysis 

Increase the capacity of and reduce costs of 
radio-tracer analysis (Carbon-14, tritium, etc.) 
so that they become routine measurements 

UNSW $150,000 
 
Long term 
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2.4.7 A roadmap for water research translation in NSW 

A road map for translation of university water research  

 

Figure 2.7: Project road-map to help solve the problem, Where is All the Water? 
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3 Part Three: The Where is All the Water? research project 

3.1 Background 

Water is a valuable and limited natural resource. Agriculture, various industries, the environment 
and metropolitan water all compete for a share of surface and ground water resources in NSW. 
These demands are dynamic; growing populations, changing land use and climate change are 
placing increasing pressure on our state’s water resources. 

Managing this resource in an integrated manner requires an accurate understanding of where water 
is and how it moves. Although we have a good understanding of many aspects of water, there are 
gaps in our knowledge. Agencies such as WaterNSW and NRAR regularly report data showing at 
least 25%, equivalent to hundreds of gigalitres, of water in catchments as “unaccounted 
differences”. 

The availability of new and emerging sensing technologies and data analysis techniques will enable 
us to increase certainty in the information we do have and obtain new information to fill the gaps in 
our knowledge. 

3.2 Objectives 

Three NSW agencies with key responsibility for water management; DPIE5, NRAR6 and WaterNSW7 
presented to the research group on the 25 February 2021. These talks gave further information on 
how they experience the unaccounted differences and suggestions on how better data and sensing 
can assist them. High level summaries were thus made: 

• How can research help to manage to capture, store and release water: The right amount of 
water, in the right place, at the right time. (WaterNSW) 

• How can the research address the issue of the “25%” unaccounted for water in some of the 
water balances. (NRAR) 

• How can this provide data to improve knowledge of ground water resources, what 
groundwater is influenced by and influences on; and thus aid more robust, timely, scale 
appropriate decision making. (DPIE) 

The two high-level deliverables the project worked towards were: 

• A detailed approach that combines existing data sets with the latest developments in low-
cost sensing, quantum gravity sensing, gravity data sets and data fusion techniques to 
address gaps in our current knowledge of water location and movement in NSW, thus 
addressing the issue of Where is All the Water? 

• Collaborations between researchers and NSW Government agencies, that work towards a 
project design, roadmap, and prototype model to demonstrate how these agencies can use 
available and new data sources together in ways that increase certainty of water location 
and movement. 

 
5 Ground Water in NSW, Sue Hamilton, 2021, DPIE 
6 Where Is the Missing Water in NSW: The Known Unknowns, the Unknown Unknowns and the Role of NRAR, 
Ivars Reinfelds, 2021, NRAR 
7 Where Is All the Water, Dan Berry, WaterNSW 2021 

https://nssnorg.sharepoint.com/:p:/s/NSSN/EcRU1vuoPKZNjPL1mS9w5UcBCxbCQ4raVrFxvHUQsfdniQ?e=Lpht3q
https://nssnorg.sharepoint.com/:p:/s/NSSN/ETvLKDVUqatKtmvbHaFGkRoB5fT8OcnBmpg2I4Em3qROow?e=YycNIK
https://nssnorg.sharepoint.com/:p:/s/NSSN/ETvLKDVUqatKtmvbHaFGkRoB5fT8OcnBmpg2I4Em3qROow?e=YycNIK
https://nssnorg.sharepoint.com/:p:/s/NSSN/ETvLKDVUqatKtmvbHaFGkRoB5fT8OcnBmpg2I4Em3qROow?e=YycNIK
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In the early stage of the project an overall problem statement was summarised thus: 

• How can we obtain a cohesive view of water location and movement at sufficient resolution 
to enable integrated management of our water resources. 

Over the course of the project it was determined to further prove the utility of the work by applying 
the capability to a set of use cases. The definition and response to these use cases is provided in 
section 3.3.1.3. 

3.3 Approach 

The Where Is All the Water? project aims to combine existing datasets with new and advancing 
sensor technologies through data fusion techniques to address current gaps in the knowledge of 
water location and movement throughout NSW. Currently, there are significant gaps within the NSW 
water monitoring network, necessitating the need for the deployment of more physical, telemetry-
based sensors. 

3.3.1 Methodology 

The vision of this project is to provide NSW agencies with better sensing and data tools, that 
reducing uncertainty around unaccounted for differences in the water balance, thus enabling better 
management of water resources. 

3.3.1.1 Sensor fusion 

Sensing technologies already in use include subsurface water level and pressure telemetry, water 
usage metering, water depth and flow in rivers and storage locations and satellite imagery to 
characterise land use and environmental health. This project sought to bring several new sensing 
technologies to provide complimentary data to existing data sources: 

1. Satellite-based gravity measurement – enabling large area, relatively low spatial resolution 
measurement of subsurface water 

2. Quantum and classical gravimetry – medium and high-resolution mapping of surface and 
subsurface water. Offers unique insight into large surface water to groundwater flows 

3. Low-cost environmental sensors: enabling cost effective high spatial and temporal 
resolution in-situ sensing. 

4. Use of a range of existing data sets from WaterNSW, BOM, NCRIs and others 
5. A better understanding of the uncertainty of sensed data, particularly by the use of Bayesian 

inference. 

The data fusion model plays an important role in understanding the degree to which new data 
sources can improve our understanding of water location and movement. The way in which this 
combines with physical sensing data is represented in Figure 3.1. 
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Figure 3.1: Improved understanding of the waterscape by combining data and advanced physical 
sensing. 

 

3.3.1.2 Milestones 

A project plan with a series of milestones was agreed to guide the project to the deliverable and 
addressing the problem statements. These were presented in three-month intervals. See earlier 
reports addressing Milestones 1 and 2.  This, the final report considers the third set of milestones, 
with the primary contributor to the milestone in brackets. 

1. Utility of high spatial resolution sensing using low-cost sensors. (Macquarie University) 
2. Results of modelling gravitational fields and gradients of a simulated ground water system 

(ANU – Local gravity measurements) 
3. Scoping of properties required of a next generation gravity sensor (ANU – Local gravity 

measurements) 
4. Characterisation of measurements available from satellite gravimetry including 

uncertainties at various spatial scales (ANU – Satellite gravity measurements) 
5. Methodology to provide indications of uncertainty quantified estimates of the parameters 

of the preliminary model. (DARE – The University of Sydney) 
6. Hydrogeological conceptual models and data and reporting on groundwater recharge 

(UNSW) 
7. Findings regarding to what extent water quality data can complement water quantity data. 

(All) 
8. Technology review. (All) 
9. Roadmap for translation of research to day to day use by DPIE and other organisations, 

based on use cases, proposals for further work (NSW Smart Sensing Network).  

3.3.1.3 Use cases 

As is normal for an intellectual study of this kind, original parameters of enquiry are informed along 
the way. Part way through the project it was decided to consider use cases, potential, real-world 
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scenarios where the research finding might best show their utility. Practical use cases should have 
criteria that considered situations about which: 

• The analysis will provide a useful outcomes, for researchers and agencies 

• Take advantage of the multi-disciplinary approach in the project 

• They are consistent with the last six months work 

• They have suitable data and resources available 

• Can be worked into proposals for further work 

A large-scale use case: A large-scale use case was proposed that cover enough of the spatial 
domain that it can deliver interpretable outcomes using the satellite grace data (> 500 km). The 
large-scale use case gives an overview of the shifts in the water balance as a result of a large flow 
through the system: How much is retained in the system, how much evaporates and how much is 
delivered downstream. 

Low flow use case: Low flow uses cases are critical as they are likely to be caused by drought and 
other stresses. This is when management of water resources is extremely important. It is also known 
that various agency models that work adequately in times of regular flow, do not always hold when 
there is limited flow. 

High flow use case: In contrast to the Low-flow use case, a High-flow use case covers a flooding 
event or a very wet period (such as early 2021 or 2016). There are many questions here: can overall 
volume balances can be trusted, what is the accuracy of the gauging network, what fraction of the 
flood water is recharging aquifers either directly via the stream channel, from inundated floodplains 
or by rainfall across the landscape, and what remains in surface water and floodplains or 
evaporates?  In particular the attention on the different recharge processes can build on the smaller 
scale case studies in this case study. 
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3.3.2 Management and governance   

3.3.2.1 Project Budget 

Table 3.1: Project Income 

DPIE $150,000 

OCSE $150,000 

NSSN $150,000 

In-kind: NSSN, DPIE, Macquarie, ANU x 2, DARE x 2 and UNSW 
management and professorial support 

$400,000 

 $850,000 

 

Table 3.2: Project Expenditure 

Macquarie researcher costs  $90,000 

ANU researcher costs $180,000 

UNSW researcher costs $90,000 

The University of Sydney (DARE) researcher costs $90,000 

In-kind expenditure $400,000 

 $850,000 

 

3.3.2.2 Project management 

An adapted Scrum methodology was used over the nine-month life of the project. This included 
online Sprint meetings every three weeks which was the ideal time for collaborators to meet, 
provide brief reports and identify tasks requiring collaboration. 

Milestones and reports were delivered at three-month intervals. 

The project was largely undertaken during periods of COVID-19 restrictions. 

3.3.2.3 Steering Committee 

Three Steering Committee meetings were held over the life of the project at three monthly intervals. 
In addition to the project researchers, representatives from NRAR, WaterNSW and several senior 
staff from DPIE were present. A brief Terms of Reference was installed at the start of the project. 
Minutes of each meeting are kept on file. 
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3.4 Results 

3.4.1 Milestone Results 

3.4.1.1 Utility of high spatial resolution sensing using low-cost sensors  

Macquarie University (MQ) had the deliverable of developing prototype nodes for utilization of point-
source measurements to increase the temporal and spatial resolution of data from stations that are 
currently available. MQ designed and developed initial prototype nodes and have commenced 
testing and deployment of them. This included first deciding on the parameters that need to be 
sensed, which was rainfall, ambient temperature and humidity and soil moisture and temperature at 
differing depths. Then an initial low-cost technology review was undertaken for the chosen 
parameters, this is included in-detail within the report. Off-the-shelf sensors were then purchased 
and an electronic sampling system was designed to utilize all the necessary sensors and transmit 
data wirelessly utilizing LoRaWAN communication (see section 4.1.3.4). The development of the 
prototype nodes was initially conducted at a residential home due to the COVID-19 restrictions that 
were in place. Once the restrictions had been lifted, development of the first two prototypes were 
completed on-campus and then one was deployed at the Narrabri L’lara farm for testing. 

More nodes are being developed now to deploy alongside the initial prototypes to achieve an 
overall very high spatial and temporal resolution sensing system which can be deployed to any 
desired testing site. 

MQ is currently researching the inclusion of water quality data within these sensing systems, for 
example utilizing low-cost nitrate sensors within the soil to both inform about soil conditions as well 
as potentially developing an algorithm to relate the soil moisture content to nitrate readings.  There 
is room for inclusion of numerous water quality sensors and they could provide additional critical 
information. 

3.4.1.2 Results of modelling gravitational fields and gradients of a simulated ground water 
system  

A flexible gravitational simulation package was developed in MATLAB that can model gravitational 
and gravity gradient signals from arbitrary three-dimensional mass distributions defined via voxels. 
Following this, through collaboration with hydrology experts and existing borehole data, a voxel 
world was created that simulates the area around Middle Creek farm (see Figure 4.15 and Figure 
4.17). This voxel world was then simulated and the gravitational signal in the vertical direction (gz) is 
shown in Figure 4.20, the vertical gravitational gradient in the vertical direction (Gzz) is shown in 
Figure 4.. 

3.4.1.3 Scoping of properties required of a next generation gravity sensor 

The results from the gravitational simulation give an indication of the expected signal magnitude 
between dry and wet conditions and for various survey heights above the ground. The largest 
signals in Gz are of the order of 10-6 ms-2 and the smallest simulated are of the order of 10-8 ms-2 This 
sets a minimum viable sensitivity in the range of 10-7 ms-2. Such sensitivities have already been 
demonstrated to this level in laboratory-based devices. 

Quantum sensing devices, based on falling cold atoms, offer increase in sensitivity of orders of 
magnitude. 
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3.4.1.4 Characterisation of measurements available from satellite gravimetry including 
uncertainties at various spatial scales 

A simulation study was performed to assess the accuracy with which signals could be recovered on 
~200x200 km entities in the Maules Creek region. (These entities are referred to as mascons, short 
for mass concentrations) For a 150 mm simulated signal – which is realistic for most situations in 
Australia - some smearing occurs in the recovered signal from where the signal should actually be 
located. Errors of ~10-15% occur in estimates up to 400 km away but are insignificant beyond that 
distance (Figure 4.24). 

An alternate approach to estimating mass changes on mascon tiles is to look at the magnitude of 
the signal in the actual inter-satellite measurements themselves. This was assessed for both the 
simulation over Maules Creek and also to determine whether March 2020 flood waters could be 
tracked from southern Queensland into the northern rivers of NSW (Figure 4.29). While there is 
some indication that this might be possible, the interpretation is limited by the 5-day repeat time of 
the satellites flying over the same location. A careful interpretation of the available data is required, 
with cross-referencing of available stream flow data, to determine whether this is a viable method 
for obtaining higher spatial and temporal resolution. 

3.4.1.5 Methodology to provide indications of uncertainty quantified estimates of the 
parameters of the preliminary model  

As a first step DARE developed an in-depth analysis of the existing water accounting framework for 
the Namoi river in 2018/2019 from DPIE and quantified the uncertainty for the reported components 
based on readily available information. This has subsequently been extended to describe a formal 
uncertainty framework that can analyse the uncertainties in the river/groundwater system. This 
framework could not have been achieved without in-depth discussions with other sub-projects, in 
particular UNSW.  

Collaborating with the ANU sub-projects, DARE has provided an analysis of the potential 
uncertainties in inversion of the gravitational measurements. This has highlighted that measurement 
errors are a negligible contribution to the uncertainty and the uncertainty is mostly related to the 
unknown structure of the underground.  

In general, the framework is a fully specified Bayesian likelihood framework, which explicitly defines 
the posterior distributions of the water balance estimates in both time and space. This is mostly built 
on Gaussian Process modelling for the spatial and temporal integration. 

For these two identified analyses, DARE has developed estimates of the time and effort required in 
developing this into a fully operational system for a river basin.  

A pilot analysis of a low flow case study in the Namoi river has identified the following: 

• An example which quantifies the uncertainty in stream flow gauging indicating that the main 
model estimation uncertainty is in the high flow estimates (due to a low number of observed 
values), but that measurement errors are a major component of the low flow estimates; 

• An example which quantifies the uncertainty in evapotranspiration from open water and 
riparian vegetation highlighting that observations of the river width in time and space is a 
major uncertainty; and 
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• An example which quantifies the uncertainty in the groundwater surface water fluxes 
indicates the main uncertainty is in the sparseness in time and space of the groundwater 
observations combined with the interpolation of the surface water. 

Uncertainties in water quality, which were not assessed, are likely to be even greater than for water 
quantity simply due to the scarcity of measurements. Most likely, interpolation of existing data and 
water quantity data would be used to extend data series, which introduces further uncertainty. 

3.4.1.6 Hydrogeological conceptual models and data and reporting on groundwater recharge 

Groundwater recharge is one of the components of the water balance that is notoriously hard to 
determine. There are two mechanisms of groundwater recharge, diffuse recharge where the 
groundwater table is directly recharged by rainfall through the general land-surface and focussed 
recharge where the groundwater table is recharged by flow in stream/river channels. This work has 
shown that for sites close to a stream or river the predominate recharge mechanism is focussed 
recharge, with on average one recharge event per year. This compares to three potential diffuse 
recharge events over 10 years at Middle Creek Farm, for example. At the Wellington NCRIS sites 
one significant diffuse recharge event was observed over the 10 years of monitoring, with other 
smaller events also occurring but some were not widespread across the site, suggestive of spatial 
variability in diffuse recharge. 

This work also showed that antecedent conditions (i.e., soil moisture deficit) are an important 
determinant, along with rainfall amount when it comes to the likelihood of diffuse groundwater 
recharge occurring.  

Based on the NCRIS data sets utilised in this project we have developed hydrological conceptual 
models for different use cases, based on the Maules Creek Catchment. These conceptual models 
have informed our work with the use cases (section 3.3.1.3), with further detail provided in the sub-
project report (section 4.5). 

3.4.1.7 Findings regarding to what extent water quality data can complement water quantity 
data. 

The low-cost sensor nodes developed by Macquarie University facilitate the inclusion of sensors for 
water quality parameters. Alongside the development of the prototype system, alternative or 
developing techniques will be scoped out and analysed for future implementation. This includes the 
potential addition of low-cost water quality sensors to monitor hydro geochemistry, such as (pH, EC, 
NO3, CO3 and SO4). 

Neither local nor satellite gravity measurements offer a direct measurement of water quality. It can 
perhaps be said that a considerable number of water quality problems (e.g. deoxygenation) would 
be mitigated by regular flows of water in appropriate quantities. The CSIRO Aquawatch [5] program 
intends to investigate water quality parameters using satellite derived information.  

Knowing the age of groundwater can be a very useful for estimating the groundwater residence 
time or renewal rate but integrated over the catchment and therefore compliment soil and vadose 
estimates of recharge. A ‘stretch goal’ would be to increase the capacity of and reduce costs of 
radio-tracer analysis (Carbon-14, tritium etc.) so that they become routine measurements. An 
alternative would be to develop sensor methods to measure these continuously and in-situ (very 
sci-fi at this stage).  
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Frequent measurements of a suite of dissolved ions and potential contaminants may also inform on 
water quality trends threatening quality of use and environmental receptors. Such changes may also 
inform on hydrologic changes due to management and climate change. Again, in-situ continuous 
measurements would be beneficial to capture ‘hot moments’ i.e., times of pulses or greater change. 
This can currently be achieved for the total load of dissolved ions by electrical conductivity probes, 
but they are prone to measurement drift. 

 

3.4.2 Use case results 

 

3.4.2.1 A large scale use case 

A large-scale use case was proposed that cover enough of the spatial domain that it can deliver 
interpretable outcomes using the satellite (GRACE) data (> 500 km). The large-scale use case gives 
an overview of the shifts in the water balance as a result of a large flow through the system: How 
much is retained in the system, how much evaporates and how much is delivered downstream. 

Comparing the results of this scale satellite gravity data monitoring to traditional water balance 
analysis (difference between gauge observations, groundwater bore responses) will identify 
anomalies and this will be integrated in hydrological modelling as a constraint. 

In other words, while the satellite gravity data starkly shows information at a 200km2 scale, this does 
provide a tool for finer use. if there was a significant inflow of water into region X, why is subregion 
X’ reporting a deficiency of water. If region Y is in overall deficiency of water, why is subregion y’ 
using excess water? 

With refinement and further interrogation, satellite gravity data might well show some classic NSW 
river events such as the flow of water from the Northern Rivers or South-East Queensland to the 
Menindee lakes along the Darling. 

Comparing the satellite gravity data analysis to operational forecast estimates will inform  
downstream impacts related to upstream management decisions. In addition, the volume estimates 
of water retained in the landscape compared to groundwater observations will confirm recharge 
volumes and groundwater recovery. Longer term satellite gravity observations will further inform 
how much of the stored water evaporates and how much is stored longer term in the landscape, for 
example, is the groundwater truly recovered after drought, or is most of this stored in the upper soil 
layer and evaporates? 

The deployment of low-cost sensors to capture information of a release event over 1000km is an 
entirely feasible prospect. 
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Figure 3.2: Large scale water movements as represented by the change in gravity over the first half of 
2020. 

 

3.4.2.2 Low flow use case 

Tactical water releases from storage are made to assist a number of downstream clients that may 
include towns, environmental wetlands or agricultural irrigation areas. During very dry periods (such 
as late 2019) considerable transmission losses have been reported, indicating that water released 
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(in response to a water order) has not being delivered to the client. The question is whether this 
water is lost to groundwater, evapotranspiration, is extracted by other users, or bypassed the client 
in some way. Increased transmission losses during dry periods are currently taken into account by 
WaterNSW, but it is unclear if these estimates are accurate. Given that all the data and algorithms 
to derive these estimates are uncertain, there are opportunities for reviewing improved observation 
methods, optimised locations for observations or improved estimates of variables. 

As an initial case study DARE focussed on the Namoi River between Keepit dam and Gunnedah, 
including the inflows from the Peel and the Mooki, to derive uncertainties at different spatial 
locations for groundwater losses, evapotranspiration losses and surface water observations. More 
specifically, the outcome of this study would be able to pinpoint the spatial locations and times with 
the highest uncertainties and the variables (for example evapotranspiration estimates or streamflow 
estimates) with the highest uncertainties. The scope of the case study is a well-instrumented reach, 
but the methods can, with appropriate data, be extended to larger scales or longer reaches (such 
as the large-scale use case mentioned above). 

The UNSW work has drawn on prior information to define reliable initial estimates from detailed 
studies such as the Maules Creek and Wellington case study. For example, this will inform initial 
estimates of fluxes to groundwater.  

In addition, the results of this study will pinpoint locations and times where deployment of novel 
sensors (MQ Uni) or gravity measurements (ANU) are most valuable and can then be easily coupled 
to trial field studies. 

NRAR should consider the data analytics techniques and improved understanding of GW/SW 
interaction.  

 

3.4.2.3 High flow use case 

A) 

A larger scale high flow case study in the Namoi catchment concentrates on the river reach from 
Boggabri to Walgett. Starting at Boggabri has the advantage of including the past research at the 
small-scale long-term Maules Creek study site, but as pointed out, complications with inflows and 
contributions from different geological formations may increase complexity. Constraining to the 
lower Namoi west of Narrabri can provide a cleaner option (possibly with sparser data. Using the 
lower Namoi will be large enough to also use GRACE satellite data providing a further mass balance 
check as suggested in the large-scale study. 

The outcomes of this case study specifically inform water sharing plans, 45rovideng large scale 
understanding of the volumes of water in the different parts of the water balance and provide better 
understanding of flood volume estimate uncertainties in large catchments. Following a recent flood 
event (for example in 202), local gravity measurement campaigns can provide more detailed 
estimates of changes in groundwater volumes, for example different recharge volumes close to the 
river channel and on the back plains, identifying differences between diffuse and direct recharge. 
In addition, cheap sensing of rainfall and soil moisture, can further inform water balance estimates 
by characterising spatial variability and providing verification or rainfall radar estimates.  

 



 

nssn.org.au 

B) 

A companion high flow study will provide more information on the actual recharge processes and 
how streams and groundwater recover after drought. This study will focus on the historical work 
and investigations of this project at the Maules Creek site that ANU-Gram and UNSW have been 
concentrating on, as well as the investigations at the Wellington site.   It will take advantage of the 
wealth of existing data, understanding and knowledge to provide a focussed and detailed 
investigation in the local hydrological processes. This can further inform the larger scale studies by 
providing understanding of the “how” to augment the “what” in the larger scale analysis. This work 
links into the testing and concept proof of low-cost sensors and the ANU-gram local gravity 
measurements. At this smaller scale, processes can be studied in more detail and particularly aim 
to unravel the balance between “diffuse” recharge and “direct” recharge. This provides important 
information about the resilience of the groundwater system and informs water sharing decision 
making. For initial testing  

Low-cost sensors are currently installed at “Llara”, a 1000 ha farm and part of The University of 
Sydney Plant Breeding Institute. (12656 Newell Hwy, Narrabri NSW 2390), alongside capacitance 
probe moisture sensors installed as part of a landscape rehydration project. 

Given the scale of the more recent satellite products (for example 10 m pixels for Sentinel 2), satellite 
quantification of flood volumes will further inform the overall water balance estimates, linking to the 
high flow use case A. 

 

3.5 Impact and Conclusion 

The Where is All the Water? project has shown how low-cost sensing can fill gaps in NSW data; local 
gravity sensing of river catchments has been shown to be feasible, and the movement of water 
through the landscape can be measured using satellite derived gravity data. Bayesian data analytics 
techniques have shown they have the potential to reduce uncertainty in agency water data reports, 
while predominance of focussed, over diffuse rechange mechanisms has been demonstrated. 

The key outputs of this body of research are reported in more detail in Part 1, while the overarching 
narrative is described in the Executive Summary at the start of this report. 

This work has informed a road-map for the uptake of university research into water sensing and 
data analytics, see Part 2. 
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4 Part Four: Sub-project Reports 

4.1 Low-cost sensing of water catchments 

Subhas Mukhopadhyay, Brady Shearan 
Macquarie University 
 

4.1.1 Abstract 

The Where Is All the Water? project aims to combine existing datasets with new and advancing 
sensor technologies through data fusion techniques to address current gaps in the knowledge of 
water location and movement throughout NSW. Currently, there are significant gaps within the NSW 
water monitoring network, necessitating the need for the deployment of more physical, telemetry-
based sensors. This research showcases the design, development and deployment of a low-cost 
telemetry-based sensing system for monitoring various environmental parameters including soil 
moisture and temperature at an array of depths, rainfall and ambient conditions from any remote 
location throughout NSW. The Macquarie University workstream aims to aid in decreasing data 
uncertainties through developing and deploying the proposed low-cost systems to provide an 
increase in the spatial and temporal resolution of data that is currently available. The collected 
sensor data is transferred and stored in the cloud periodically through the Long-Range Wide Area 
Network (LoRaWAN) communication protocol. Adaptation and data collection from the deployment 
of a large number of the proposed low-cost sensor nodes in targeted locations throughout NSW will 
provide a major breakthrough in addressing current gaps in the knowledge of water location and 
movement throughout the state. 

4.1.2 Introduction 

The NSW Chief Scientist & Engineer’s Review of water-related data collections, data infrastructure 
and capabilities released in July 2020 highlights the significant gaps in the water monitoring 
network, particularly the large variation in density of sensors between rural and metro areas [1]. The 
majority of current sites at which water data collection occurs, excluding water storage locations 
(dams) still utilize manual data collection methods (Figure 4.1). This means that most data are not 
automatically transferred to data repositories in real-time, and manual site visits are required to 
collect logged sensor data. It is also stated that the current network is insufficient for confidently 
measuring physical/chemical water parameters as well as understanding the surface and 
groundwater interactions that are occurring. Therefore, it is apparent that significant technological 
upgrades to the monitoring network need to be made, and through the research and development 
of low-cost telemetry-based sensor systems, both the data uncertainties and gaps in the monitoring 
networks can be greatly reduced. 

The Macquarie University sub-project is developing low-cost sensor nodes to be deployed to 
monitor traditional environmental parameters to increase the temporal and spatial resolution of 
historical data that currently exists. Low-cost sensors will be deployed to provide ground-truthing 
real-time data that is optimised to maintain high spatial and temporal resolution, aiming to provide 
a better understanding of what is causing the significant uncertainties in the whereabouts of the 
‘missing’ water that is largely unaccounted for throughout NSW. 
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Figure 4.1: WaterNSW water quality monitoring network sites. T: Telemetered, L: Logger only, Manual. 

 

Currently, there is significant amounts of water loses throughout waterways within NSW that are 
largely unaccounted for. These differences can be categorised into three main areas of interest, 
including surface evaporation, riparian vegetation transpiration, groundwater flux (loss to GW, GW 
to trees).  

One of the main parameters of focus for the prototype system is groundwater recharge, which will 
be analysed through measurements of the change in soil temperature and moisture over time. This 
will aid the modelling in understanding the reactions occurring between surface and ground water 
and investigate losses corresponding with groundwater flux. 

The emergence of Wireless Sensor Networks (WSNs) are driving the ever-developing Internet-of-
Things area. They have received a great deal of attention across a diverse range of research areas 
with a particularly recent interest in environmental monitoring. Deploying WSNs over larger and 
larger areas has resulted in the development of communication protocols which are able to utilize 
sub-GHz frequency bands for communication over significant distances. These frequency bands 
provide superior propagation characteristics in comparison to higher frequency bands, though 
these typically can only maintain very low data rates, which is suited towards sensor applications.  

The proposed system will employ low-cost sensing techniques to monitor traditional parameters 
whilst utilizing wireless connectivity to improve upon the spatial and temporal characteristics of data 
that is currently available. The system will measure rainfall, soil moisture and temperature using a 
sensor array, as well as ambient temperature and humidity. These parameters will be measured 
through low-cost methods to augment official gauging stations at unmeasured locations. The new 
sensors will be developed as Internet of Things (IoT) enabled sensor nodes such that the measured 
data will be uploaded to cloud in real-time without any manual intervention. 
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The developed low-cost sensing systems will not have any restrictions in terms of use at any specific 
location, apart from the individual sensors general placement constraints.  The use of LoRaWAN 
communication was chosen due to the minimal deployment costs and constraints alongside 
significantly low power consumption and being deployable in both urban and remote testing 
locations. 

 

4.1.3 Technology review of low-cost sensors 

The following will explain an initial review of the low-cost technologies available for the decided 
sensor system parameters. 

4.1.3.1 Rainfall Sensors 

Historically, the most commonly employed technique for point-source rainfall measurements is the 
use of a tipping-bucket rain gauge. These utilize a mechanical fulcrum that tips when water is filtered 
into the system through funnelling (Figure 4.2). The volume of each side of the fulcrum can be 
equated to the amount of water that has fallen over time [6]. Though more recently, low-cost 
techniques have become more popular within research applications. These include capacitive 
sensors as well as ultrasonic sensors, which utilize low-cost, low-power techniques to determine 
the water level of a container after rainfall has occurred [7]. 

 

  

Figure 4.2: Tipping bucket and ultrasonic rain gauge. [8, 9] 

 

An ultrasonic sensor was deployed within our designed system due to the process of water being 
stored and level-measured in a container before being emptied. This allows for the addition of water 
quality sensors to be easily implemented into the system at a future point, providing additional 
information on the quality of the rainwater.  

In terms of larger scale applications, recently there have been research outputs investigating the 
use of remote sensing applications to monitor rainfall over large areas. One of the most recent 
techniques used is the estimate of rainfall through measuring the change in telecommunication 
signal strength between two or more radio towers. This technique is only very recently seeing 
research and development application within Australia [9]. Similarly, to the mobile towers, a similar 
remote sensing application could be conducted utilizing the LoRaWAN signals that are produced 
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by each of the sensor nodes, acting as a ‘portable cell tower”. Though this type of technique is still 
in a stage of very early development and was not deemed appropriate for the timeline of the initial 
stages of this project.  

An ideal outcome of this project in the long-term, would to be to utilize a similar type of remote 
sensing technique and deploy the designed sensor nodes as ground-truthing calibration points over 
a much larger scale. 

4.1.3.2 Soil temperature and moisture 

All soil moisture measurement methods have their own specific limitations and challenges, with 
ideal sensors being chosen based upon their size, accuracy, cost, response, ruggedness and other 
parameters.  Often the actual sensors used within these applications are not expensive themselves, 
but rather the interfacing/sampling electronics obtaining data from the sensors are expensive.  

Currently, there are a wide variety of techniques that are utilised to develop sensors to conduct soil 
moisture measurements. These include dielectric, gravimetric, tensiometer, neutron, gamma-ray 
project and remote sensing. A detailed review and comparison of each of these technologies can 
be seen in Table 4.1 with further explanation available in [10]. 

Table 4.1:  Available Soil Moisture Sensor Technologies. 

Sensor / 
Manufacturer 

Principle Brief Description Cost 

SEN0193 
DFRobot 
(China) 

Capacitive The simplistic single probe capacitive sensor is 
coated with insulating paint to prevent corrosion 
and scratching for long-term deployment. Though 
additional waterproofing may be required.  

$15 

HD3910 
Delta Ohm 
(USA) 

Capacitive  Three-probe capacitive sensor which is suitable 
for measurements in small volumes, giving direct 
volumetric water content readings from 0-60%. 

$370 

10HS 
Decagon Devices 
(USA) 

Dielectric 
principle 

Distinct instrument sensitivity to soil type, thus 
indicating the necessity for specific individual soil 
calibration. More costly than similar devices.  

$400 / 
$900 
(With 
LoRa) 

TDR-315N 
Acclima company 
(USA) 

Time-domain 
reflectometry 
(TDR) 

TDR based small 3-probe based soil moisture 
sensor. It achieves acceptable accuracies for 
managing irrigations at the site with low salinity 
and low clay content. 

$650 

ECH-GS3 
Decagon Devices 
(USA) 

Dielectric 
principle 

These sensors offer research-grade accuracy at an 
economical price. Though often result in a more 
costly installation process.  
 

$850 

SoilVUE10 
Campbell Scientific 
(USA) 

 TDR This is a soil water content profile sensor, 
measuring soil moisture, electrical conductivity, 
and temperature profiles 

>$1000 

EnviroPro 
EnviroProSoilProbes 
(Australia) 

Capacitive Field of influence is significantly larger than 
capacitive sensors of a similar diameter. This 
allows for more meaningful soil measurements 
(Moisture, temperature and EC).  

>$1000 
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The most cost-effective way of measuring soil moisture from a point-source perspective is through 
utilizing low-cost capacitive sensors. These commonly used sensors are an efficient way of 
monitoring the moisture content, though these sensors are prone to rapid corrosion and error over 
long periods of use. Therefore, when selective a sensor for use, it was important to select one that 
has been coated with an anti-corrosive, waterproof material. This type of coating also provides 
scratch-resistance which is of particular importance when installing the sensors into coarse soil.  

An example of the types of capacitive soil moisture probs can be seen in Figure 4.3, with the sensor 
that was deployed in the final system being the SEN0193 soil moisture sensor (b), manufactured by 
DFRobot [11].  These were the most appropriate low-cost capacitive sensor for use within our initial 
prototype system, due to significantly low installation costs and ease of interfacing. Other more 
costly capacitive-based solutions operate using the same principle, though they often use an array 
of capacitive probes to provide continuous readings of the soil at desired depths. We are replicating 
this utilizing an array of low-cost SEN0193 sensors. 

 

 

Figure 4.3: Common soil moisture sensors and data logger systems [5]. 

 

Soil temperatures measurements are generally limited by the cost of the sensors, with point-source 
measurements being the cheapest and non-invasive measurements being the more expensive 
route. These prototype nodes were designed to conduct point-source measurements; therefore, 
standardised miniature digital thermometers are the most appropriate. 

 Currently there is research surrounding the use of fibre-optic cabling as an invasive technique to 
measure the change in soil temperature over significant distances, though these techniques still 
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currently accompany significant development and deployment costs [10]. Significant research is 
currently being undertaken to improve remote and proximal sensing techniques including Infrared 
and microwave signal systems such as RFID [11].  These currently are highly expensive and both 
hold limitations in their measurement depths and accuracy in small-scale applications, making them 
less than ideal for recharge monitoring.  

For the temperature sensors, waterproofing and scratch resisting becomes of significant importance 
for deployment over long periods to maintain sensor accuracy and reliability. Therefore, it was 
decided that the SHT-30 would be deployed within the initial prototype nodes. These sensors are 
epoxy coated and placed inside a metal mesh encasing, ensuring they are completely waterproof 
and employable within corrosive environments. Other sensors such as the soil temperature sensor 
Figure 4.3 are deployable only in certain soil types that do not hold heavy metal corrosion rates. As 
the final deployable location was not finalised during the design, soil conditions were unknown and 
therefore the safest option was to deploy a rugged and shielded temperature sensor. 

 

Figure 4.4: Combination of remote and in-situ sensing techniques for improved water balance estimates. 

 

Again, an ideal outcome of this project in the long-term in terms of soil moisture and temperature, 
would to be to utilize a remote sensing technique such as infrared or RFID sensing and deploy the 
designed sensor nodes as ground-truthing calibration points over a much larger scale. These could 
then be utilised alongside gravity sensing to greatly improve the large-scale estimates of the water-
balance equation, as exhibited in Figure 4.4. 

4.1.3.3 Ambient Temperature & Humidity 

Numerous types of low-cost temperature and humidity sensors are readily available for purchase, 
making the main deciding factor being the size and ruggedness. The low-cost sensor we plan to 
deploy in our system is one that has been utilised for numerous research projects within our 
laboratory at Macquarie University, the “CCS811/BME280 Environmental Combination Sensor”. This 
sensor provides ambient temperature and humidity readings, as well as the optional monitoring of 
multiple other environmental parameters including CO2, atmospheric pressure and total volatile 
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organic compounds. Although these may not be the main parameters of interest, measuring these 
parameters accurately alongside our system may provide useful data that can be analysed and aid 
in modelling or finding trends within the data.  

 

4.1.3.4 Telecommunication 

The selection of an appropriate telecommunication protocol is the most critical component of a 
wireless sensor node. Many different protocols are available, providing a wide range of properties 
for different applications. For our application, we require a communication network that is very low-
power and allows for regular transmissions.  There are numerous protocols available for our 
application, as can be seen in Table 4.2. 

 

Table 4.2: Communications protocol comparison. 

Technology Frequency Data Rate Range Power Usage Cost 

3G / 4G Cellular Bands 10 Mbps >15km High High 

Bluetooth / 
BLE 

Sub-GHz,  
2.4 Ghz 

1-3 Mbps < 100m Low Low 

Wi-Fi Sub-Ghz, 
2.4 GHz, 
5 Ghz 
 

0.1-54 Mbps < 100m Medium Low 

Zigbee 2.4 GHz 250 Kbps  ~ 200m Low Medium 

NB-IoT Sub-GHz < 1 Kbps > 10 km Low Medium 

LoRa Sub-Ghz < 50 Kbps ~ 200m Low Low 

 

LoRaWAN, which stands for ‘long-range wide area network’, was chosen as the communication 
protocol to use for the prototype nodes as this developing technology offers the lowest power 
consumption and the most cost-effective data transmission as the sensor data payload size is very 
small. The LoRaWAN protocol allows for data to be transmitted over significantly larger distances 
than a typical Wi-Fi network, though at much lower data rates [12].  

The sensor nodes proposed within this research do not require significant quantities of data to be 
transmitted, though rather it requires regular small data transfers over significant periods of time. 
Therefore, as the nodes are ideally to be placed in the field for up to years at a time, the LoRaWAN 
network is the best option for the application of these nodes. Fortunately, both the testing site at 
Narrabri farm and Macquarie University have installed a LoRaWAN gateway, which allows for the 
sensor nodes to be easily connect to the network.  

There has been development of the use of low-earth orbit satellites to act as gateways for LoRaWAN 
nodes, as depicted in Figure 4.5. This is particularly useful for remote sites of interest in which 3G 
and other communication options are not available. There are Australian companies working on 
commercialising this technology, including FleetSpace [13], which are aiming to offer satellite 
gateway connections for as a low as $2 USD per device annually. Moving forward, this would be an 
ideal solution to removing the requirement of a gateway node when deploying a large number of 
nodes over significant distances.  
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Figure 4.5: LoRaWAN LEO satellite connection example diagram. 

 

4.1.4 Sensor Node Design 

The prototype system utilizes an array of three soil moisture and three soil temperature sensors, an 
Arduino Uno microcontroller, an environmental combination sensor, a rain gauge, a solar panel, 
solar power conversion shield and a rechargeable battery to maintain energy autonomy. The soil 
moisture sensors are connected to the Arduino as analogue inputs and the soil temperature sensors 
are connected using the I2C communication protocol, through an I2C multiplexer as the temperature 
sensors all shared the same local address.  The solar charger shield and the LoRa shield are also 
connected with the main microcontroller through Arduino compatible shields. The 6000 mAh 
rechargeable battery and 6 V solar panel are connected with the power management block. A 
summary of the types of sensors and other electronics are listed in Table 4.3, the circuit block 
diagram of the proposed system is shown in Figure 7.1 and a flow diagram for system operation in 
Figure 7.2. 
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Table 4.3: Electronics used in the prototype system. 

Component Name Description 

Arduino Uno Microcontroller used for interfacing sensors and 
components 

DFRobot Soil Moisture Sensor Capacitive soil moisture sensor with protective 
coating to prevent corrosion and scratching 

SHT-30 Temperature Sensor Weatherproof temperature sensor with metal 
encasing for soil deployment 

CCS811/BME280 Environmental Combo BME280 provides humidity (%), temperature (◦C), 
and barometric pressure (Pa) 

 I2C Multiplexer I2C multiplexer board to combat device 
addressing issues. 

Rain Gauge Tipping Bucket / Ultrasonic Rain gauge 

6V 6W Solar Panel Solar panel for Voltaic 

Seed Solar Panel Conversion Shield  Solar panel power conversion shield for Arduino  

LoRa Shield for Arduino 915 MHz Long-range transceiver 

Polymer Lithium-Ion Battery 3.7 V 6000 mAh Rechargeable battery 

ANT-916-CW-HWR-SMA External antenna 

 

Battery calculation for developed sensor node 

The sensor node system remains on for the entire period it is deployed. Sensors are set into an idle 
state when not in use for battery autonomy. The system was developed to run in 15-minute 
transmission cycles, taking only around one second to obtain data then transmit it. Once data is 
collected, the sensors that are able to be programmed go in to an idle state while the LoRa shield 
goes into an active mode for data transmission. Once the data is transmitted the shield goes into 
an idle state and the system goes into a low-power state. Table 4.4 shows the current consumption 
by the sensor node. 
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Table 4.4: Node current consumption calculation. 

No. Name of the 
Component 

Run time Current 
consumption 
(mA) 

Current consumption in 1 cycle 
(mAsec) 

1. Arduino Uno MCU 15 min 20  = 20 × 60 × 15 = 18000 

2. 3x Soil Moisture 15 min 15 = 15 × 15 × 60 = 13500 

3. 3x Soil Temperature  15 min 1  = 1 ×15 × 60 = 900 

4. Env. combo (idle) 14 min 59 s 1 = 1 × (14 × 60 + 59) = 899 

5. Env. combo (active) 1 s 13 = 13 × 1 = 13 

6. LoRa shield(idle) 14min 59 sec 
940 msec 

1 = 1 × (14×60+59+940/1000) = 899.94 

7. LoRa shield (Active) 60 msec 120 = 120 × (60/1000) =7.2 

 

 

  

The total current drawn by the system in if data is collected twice daily is found as, 

 

𝐼𝐼𝑛𝑛 =
18000 + 13500 + 900 + 899 + 13 + 899.94 + 7.2

60 ∗ 15
=

34219.14
900

= 38.021 mA 

                     

Power consumption, Ps is calculated as 

 

⇒ 𝑃𝑃𝑠𝑠 = V × 𝐼𝐼𝑛𝑛 = 3.7 × 38.02 = 140.678 mVA 

 

If the power converter efficiency is 0.85%, the minimum mVA required from the battery, 

 

𝑃𝑃𝑏𝑏𝑏𝑏 =
140.678

0.85
= 165.50 mVA 

 

As the voltage of the battery is 3.7 V, the required discharge from the battery is,  

 

𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑 =
165.50

3.7
= 44.73 mA 

 

Hence, the lifetime of 3.7 V 6000 mAh battery is found as: 

 

𝐵𝐵𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =
6000
44.73

= 134.13 hrs 
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If the battery is 100% discharged, the 3.7 V 6000 mAh battery can sustain up to 134 hours (Approx. 
5 and a half days).  

The tipping bucket rain gauge will only draw a very minimal amount of current on days that it is 
raining, so it was not necessary to include within calculations. The system will survive between 5 to 
6 days maximum without solar power input. The solar panels utilized are 6V, 6W panels, providing 
enough power to sustain the system provided there is sufficient sunlight. 

 

4.1.5 Developed Nodes 

Two nodes were constructed for testing and deployment, as seen in Figure 4.6. These were 
developed as point-source monitoring nodes with initial deployment planned to be within a low-
vegetation area at Macquarie University. Therefore, it was decided the node could be developed 
without the need for significant distance between the sensors and the electrical junction box which 
would be placed directly next to the soil sensors. This is not ideal for large-scale application as the 
LoRaWAN node should have a direct line-of-sight to the gateway, though there is not a significant 
distance between the gateway at Macquarie so this was not considered a critical component.  

The nodes consisted of a soil sensor array attached to a hollow PVC piping, IP68 weatherproof 
Electrical junction enclosure, solar panel attached to the roof of the enclosure, an antenna for LoRa 
communication and each has their own rain gauge; one tipping bucket and one ultrasonic gauge. 
Cabling was protected with plastic conduit as well as all cabling and antenna connections to the 
junction box being sealed with silicon epoxy to prevent rainwater / moisture from entering and 
interfering with electronics. 

 

 

Figure 4.6: Developed prototype nodes. 
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4.1.6 Study Location  

As part of the collaborative effort between the sub-projects, a testing site was offer to Macquarie 
for use by USYD for initial scoping of deployment requirements and future use for deployment of 
sensor nodes. The location was L’lara farm, which is part of a large commercial farm partially owned 
by USYD and utilised for agricultural research purposes. 

  

Figure 4.7: Field testing site at L’lara Farm, Narrabri, NSW. 

 

There are currently over 32 professionally installed soil moisture sensors installed on the property, 
which operate utilizing a public LoRaWAN network. These sensors required a surrounding caging 
to prevent livestock from damaging the sensors, as seen in Figure 4.7. These encaged locations 
alongside usage of the LoRaWAN network were offered to Macquarie for future deployments. This 
is ideal as it is as close as possible to a real deployment area as possible whilst already having a 
network to make the data transmission and storage a much simpler process.  

One of the developed test nodes was deployed alongside previously implemented sensors. This 
particular location also held a large rain gauge and it was deemed appropriate to deploy a node 
alongside it to compare and contrast collected data. Therefore, the tipping-bucket rain gauge was 
installed inside the gating, as seen in Figure 4.8. 

 

Figure 4.8: Installation site of node. 
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This location was the only spot with minimal surrounding vegetation, allowing for the node the 
connect to the LoRaWAN network without being deployed on a pole / at significant height. It was 
found that vegetation surrounding the node would have a significant impact upon the Signal-to-
Noise Ratio (SNR). To combat this, the spreading factor was increase to compensate for the reduced 
line-of-site to the gateway. The spreading factor controls the ‘chirp rate’, which in term controls the 
speed of the data transmission. A lower spreading factor means faster chirps and therefore a higher 
data transmission rate, though it also means a reduction in the range of LoRa transmissions. 
Therefore, the spreading factor was increased to the maximum value on the day of installation 
resulting in larger battery consumption then the system was initially designed for.   

The soil sensor array was installed utilizing a 50mm soil sampler probe to dig a test pit next to the 
pre-installed rain gauge. The arrangement of the sensor array results in a significant amount of 
space between the capacitive moisture sensors and the surrounding soil. A mixture of soil, sand 
and water was created within a container and poured to fill the gaps between the sensors and soil. 
It was then expected to take a period of time for the soil to settle and dry. Heavy rain was expected 
for the following day, which would result in the soil wetting, compacting and eventually drying 
around the sensors. 

 

4.1.7 Initial results 

Initial data was collected from the installed node at L’lara farm and stored on a ThingSpeak server. 
The stored data can be seen in Figure 4.9, with the initial data being collected over a 3-day period. 
The node stopped transmitting data approximately 3.5 days after being installed. As the period of 
fieldwork for installation was for one day, on the 18th of November, I was not able to stay around to 
trouble-shoot any issues and problems that would occur after my visit. This was the major downside 
of deploying the initial nodes at the L’lara location, particularly before being able to undertake 
significant testing at a closer location such as Macquarie. 

From the data that was collected, it could be seen the temperature sensors functioned well, with 
top soil temperature showing larger fluxes as compared to the deeper soil sensors. The temperature 
data values were shortened from float (decimal points) to integer values to lower the transmission 
payload size in an attempt to compensate for the increased spreading factor required. The decimal 
accuracy was not a large concern for the initial node as the main objective was to deploy and assess 
the performance of the system. 

The soil moisture data saw a gradual increase in the moisture readings, this can be assumed to be 
due to an adjustment period as the soil mixture poured into the pit was settling in place and 
contacting the sensor. The sensor array maintains soil depths of 15cm, 30cm, 45cm for top, middle 
and bottom respectively.  

When the rainfall event began on 21/11/21, the middle and bottom moisture sensors were able to 
pick up and record the event showing an increase in moisture, whereas the top soil sensor did not. 
This could be due to the soil-sand mixture moving downwards as it wet and losing direct contact 
with the top capacitive sensor. A more detailed and confirmable explanation can be obtained when 
the node is visually inspected during the next visit.  



 

nssn.org.au 

The node stopped transmission late on 21/11/21, this most likely being due to a battery and lack of 
solar availability issue or potentially water damage from the rainfall event. The erratic readings from 
the soil moisture sensors shortly before transmission ending may be due to either moisture effecting 
the on-board sensor electronics or low-voltage complications from the discharged battery. 

4.1.7.1 Discussion 

Throughout this report, a low-cost sensing system for monitoring of soil moisture and temperature, 
rainfall and ambient conditions has been explained in detail. Macquarie university had the 
deliverable of developing prototype nodes for utilization of point-source measurements to increase 
the temporal and spatial resolution of data from weather stations that are currently available. 

The development of the nodes was delayed due to the COVID-19 lockdown, though an initial test 
deployment and further scoping of system requirements was able to take place at Narrabri. The 
systems were developed to be initially tested at Macquarie, though one was deployed at Narrabri 
to achieve more realistic testing conditions and allow for our workstream to identify areas of concern 
with the node design and make any necessary improvements.  

More time is required to validate the testing of the nodes, though with minimal adjustments and a 
few system improvements it is clear these nodes can be deployed at a location of interest to gather 
data that is of high spatial and temporal resolution. 

The use of low-cost sensors which are developed at Macquarie University provides numerous 
advantages, including that prototyping can be readily and rapidly achieved to develop sensors 
nodes that are fit for purpose and meet the unique research and agency requirements. 

The developed nodes can be easily adapted for use alongside different measurement platforms 
and made compatible for any required communications protocols to allow for the systems to be 
successfully deployed at any catchment or area of interest throughout NSW. Differing sensors of 
different shapes and sizes for different physical parameters can be added or swapped in and out of 
the nodes with ease. This allows for the research and developmental work to be decoupled and de-
risked from reliance on a commercial partner. 
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Figure 4.9: Deployed sensor node data stored on a designated ThingSpeak channel. 

 

4.1.8 Future Work 

In terms of future work to be completed, this is broken down into three categories; Immediate term, 
medium-term and long-term goals.  

In the immediate term, the next step is to develop many more of the prototype nodes and deploy 
them at a site of interest. This first involves making the necessary design improvements noted from 
the Narrabri deployment and then manufacturing many more prototype nodes for deployment. This 
includes further ruggedisation if necessary, such as further epoxy putting and replacing the plastic 
conduit with stainless steel conduit. This will come as a result of analysing the node once we are 
able to retrieve it from Narrabri. A sensor node deployment risk matrix (Appendix 1) was created for 
reference and  

The testing site offered by USYD – Narrabri / L’lara farm would be the most likely location, though 
possibly another site in collaboration with the deployment of ANU’s gravity sensors could see fit. 
This would provide an outcome of achieving 20 – 30 deployable sensor nodes monitoring soil 
moisture and rainfall to collect data and reduce uncertainties. Another area of interest is 
investigating water percolating through soil not only straight downwards in a vertical direction, but 
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laterally through interpretation of soil moisture data between nodes. There are many analytical 
relationships that can be investigated from the data collected from the deployment of a swarm of 
closely deployed nodes.  

In the short to medium term, further research and analysis regarding the inclusion of additional 
sensors would be the next goal. As we are currently monitoring rainfall and soil moisture quantity, 
the inclusion of quality sensors would be appropriate. For example, measuring rainfall quality 
(hardness and pH etc.) and/or soil quality which could then be analysed to potentially provide a 
relationship to the moisture content. At Macquarie university we specialise in developing low-cost 
sensors, and the inclusion of these could provide a significant increase in the amount of information 
each of these nodes provide. 

Once many sensor nodes have been deployed and are confidently operating and collecting data in 
an accurate and useful measure. Deploying these nodes at strategic locations within a large-scale 
testing area and using them as calibration points for large-scale remote sensing is the long-term 
outcome. These nodes could be easily deployed as calibration points for sensing parameters such 
as rainfall, temperature and soil moisture (e.g. using mobile cell-tower signals to determine the 
amount of rainfall in an area of interest). 

 

Risk Matrix for low-cost sensor deployment 

Table 4.5: Risk Matrix for low-cost sensor deployment. 

 Key Risks Mitigation  Measures Key questions to 
determine mitigation 
effectiveness 

Flood Flood-induced high 
water levels, causing 
electrical equipment 
to be submerged for 
significant periods. 

Ensure structure is tall enough 
for safe clearance under 
foreseeable flood levels. 
Ensuring the structure is 
stable and will not drift away 
during floods (e.g. Anchor 
Bolting Structure). Sensors 
should be waterproof and 
electrical junction box 
silicone/epoxy sealed to 
provide weatherproofing.  

Where can the system be 
deployed within a flood-
prone area to have 
sufficient clearance to 
safely accommodate a 
1:200 year flood without 
submerging components? 

Wind Storm Vegetation/tree 
branches could fall 
and damage system.  

Deploy structure in an area of 
clear vegetation. Ensure 
structure is stable and can 
withstand strong winds. 
(Particularly important for 
rainfall sensing). 

Is the structure deployed 
close-by to tree branches 
that may cause damage? 
Can the system maintain 
stability during strong 
winds? 

Fire Bush fires can cause 
immediate damage if 
system catches on 
fire. Aftermath 
impacts including 
ash covering and 
damaging sensors. 

Installation of system should 
occur in a location with 
minimal surrounding 
vegetation  

Is the system deployed in a 
wild-fire possible area? If so, 
how close to vulnerable 
vegetation?   
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Condensation Electrical enclosures 
exposed to moisture 
from condensation 
due to changing 
environmental 
temperatures. 

Ensuring main electronic 
interfacing components are in 
waterproof enclosures and 
potentially the additional use 
of silicone/epoxy putting to 
ensure weatherproofing 

Are the electronics / 
enclosure designed to 
prevent & protect from 
water/moisture damage? 

Livestock Livestock chewing 
through cabling / 
damaging system 

Run cabling through PVC 
conduit. Potentially run 
cabling from sensors to 
junction box underground. 

Are livestock able to chew 
through protective conduit? 
What do currently deployed 
systems use to minimize 
this risk? 

Vandalism Damage/theft of 
systems due to 
vandalism 

Signage, lock electrical 
junction box, blend into 
vegetation 

Is the system deployed in 
an area of known risk of 
theft? Where are current 
weather stations and 
sensors deployed and how 
do they prevent vandalism? 
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4.2 Local gravity sensing of creeks and rivers 

Samuel Legge, John Close 

ANU, Canberra 

 

4.2.1 Gravity sensing overview 

The concept of using gravity as a signal to detect water is simple. Changes in mass due to water 
movement will results in a change to the local gravitational field. By monitoring the local gravitational 
field, it is therefore possible to gain information about the general location and amount of water 
beneath the surface. This overview section will give a generalised background on gravity signals 
and sensing.  

The primary goal of this investigation is to assess the feasibility of using current and next generation 
gravity sensors as a method of detecting and managing water resources. To achieve this the 
gravitational signal of groundwater in a real-world system was simulated. The sections following this 
one will detail the construction of a toy world based off real world data and the resulting gravitation 
signals from water variations within this toy world.  

4.2.1.1 Density variations 

When considering the expected gravitational signal due to water it is easiest to think about it in 
terms of the density variations water causes. Liquid water has a typical density of 𝑑𝑑𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤=1000 𝑘𝑘𝑘𝑘.𝑚𝑚−3 
and has a strong differential gravity signal to the typical atmosphere with a density of ~1 𝑘𝑘𝑘𝑘.𝑚𝑚−3, 
water vapor is neutrally buoyant and has no differential gravitational signal to the atmosphere.  

Water that flows or rests above the ground displaces the atmosphere and fully fills that volume. 
Water under the ground exists within the voids between the porous earth. The ratio of liquid water 
to solid ground is variable depending on the ground composition and is known as the void ratio 𝛼𝛼. 
When liquid water flows into the ground its effective density is reduced by this ratio. For example, 
sandy soil that has a void ratio of 𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠=0.3 has 30% of its volume as space that can be saturated by 
water. When this occurs, the effective density of the water that is saturating the sand is given as 
𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑑𝑑𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 300𝑘𝑘𝑔𝑔.𝑚𝑚−3. 

This is the maximum amount of water that can exist in this ground type. As water travels through 
the ground there is a typical retention ratio 𝑟𝑟 that through surface tension will hold onto the water 
that travels through it. This mean that should the saturated ground water drain away from an area 
due to gravity, it will retain some moisture, for our sand example this value is typically 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑=0.5 such 
that after draining it will still hold a water at a density given by 𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟  =  𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒 × 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  =  150𝑘𝑘𝑘𝑘.𝑚𝑚−3. 

This retained water will not drain from the sand under the influence of gravity however it can still be 
removed, typically through evapotranspiration at the ground surface or from plant roots extracting 
the moisture left in the ground.  

4.2.1.2 Differential measurements 

Using gravity to measure water cannot easily be done in a single direct measurement as any such 
measurement will contain the strong background gravitational field of earth, as well as local scale 
gravitational signals such as dense mineral deposits and topographic variations.  
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By taking two gravitational measurements at differing times, the difference between the 
measurements can be taken to give the time differential signal. It can be assumed that the 
background field is typically constant and hence is removed from the differential measurement. The 
remaining signal will show a gravitational signal due to any density changes that have occurred 
between surveys. It can be assumed that this is primarily due to water movement as this typically 
occurs on a much faster timescale than geological variations. However, it should be noted that any 
faster geological events such as landslides, earthquakes, significant erosion, or human interference 
such as mining or quarries may generate measurable differential gravity signals. It is expected that 
such changes will be able to be accounted for or small compared to groundwater signals. 

4.2.1.3 Gravity and gravity gradients 

When preforming a gravity survey, the typical expectation is that the senser will measuring the 
acceleration due to gravity towards the centre of earth mass, there are however other potential 
measurements that may be of use such as the lateral gravitational acceleration or the gradient of 
the gravity signal. Gravity is a vector filed and as such has a component in the three cartesian 
directions shown in Figure 4.10 and represented as 𝑔𝑔_ where the subscript indicates the direction. 
This leads to nine components of the gravity gradient field as there is a gradient to each gravity 
component in each cartesian direction. In Figure 4.10 the gradients are labelled as 𝐺𝐺__ where the 
first subscript is the cartesian direction of the gradient and the second is the gravitational filed 
component of that gradient. For example, the 𝐺𝐺𝑧𝑧𝑧𝑧 gradient is the rate of change of the 𝑔𝑔𝑥𝑥 gravity 
vector in the 𝑍𝑍 direction. 

 
 

Figure 4.10: Diagram of the gravitational vector field in 𝑔𝑔𝑥𝑥 𝑔𝑔𝑦𝑦 𝑔𝑔𝑧𝑧 and the corresponding nine gradient 
components. Reference https://en.wikipedia.org/wiki/Gravity_gradiometry 

 

4.2.1.4 Typical gravity signals 

To understand measured differential gravity signals it is important to consider what various shapes 
of density variations will look like. Here we will investigate the typical gravitational signals for a 
spherical mass source and a flat disk mass source, knowledge of these two basic structures will 
allow simple qualitative interpretation of the simulated gravity measurements.  
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Gausses law dictates that there is no difference in gravitational signal between a point source or a 
spherical source of mass, assuming that gravity is measured outside of the mass sphere. The 
gravitational signal from such sources can be easily modelled using newtons law of universal 
gravitation for both the gravitational 𝑔𝑔𝑧𝑧 and gravity gradient 𝐺𝐺𝑧𝑧𝑧𝑧 signals. For all simulations in this 
section the mass is considered to be centred at the origin and the height is taken above the mass 
in the 𝑍𝑍 direction. The signals for a point mass are given by the following equations. 

𝑔𝑔𝑧𝑧 =
𝐺𝐺𝐺𝐺
𝑟𝑟2

 

𝐺𝐺𝑧𝑧𝑧𝑧 =
2𝐺𝐺𝐺𝐺
𝑟𝑟3

 

Where G is the gravitational constant, m is the mass and r is the distance from the centre of mass. 
When looking at the signals generated by such sources on a logarithmic scale as shown in Figure 
4.11, we can see the clear inverse square relationship of the gravitational signal and the inverse cube 
relationship of the gradient. 

 

 

 
 

Figure 4.11: Gravitational signal (solid line) and gravitational gradient signal (dashed line) of three 
point/sphere mass sources. 

In the real world we do not always expect approximately spherical sources, in fact, we know that 
water typically spreads out and fills large areas, resulting in sheets of mass that have a different 
gravitational signature. The gravitational signal given by an infinite plane of homogeneous density 
is constant and hence has a gravitational gradient of zero. The signals for an infinite plane are given 
by the following equations. 

𝑔𝑔𝑧𝑧 = 2πGρt 

𝐺𝐺𝑧𝑧𝑧𝑧 = 0 
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Where 𝜌𝜌 is the plane density and 𝑡𝑡 is the thickness of the plane. By comparison the gravitational 
signal of a finite disk has two regimes. The first, when close to the surface relative to the disk radius, 
acts like an infinite plane and the second, where the distance increases to greater than the disk 
radius approximates a point mass source. The signals for a finite disk are given by the following 
equations. 

𝑔𝑔𝑧𝑧 = 2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 �1 −
𝑟𝑟

√𝑅𝑅2 + 𝑟𝑟2
� 

𝐺𝐺𝑧𝑧𝑧𝑧 =
2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝑅𝑅2

(𝑅𝑅2 + 𝑟𝑟2)
3
2
 

Where 𝑅𝑅 is the disk radius. Examples of this are given in Figure 4.12 and Figure 4.13. 

 

 
 
 
 

Figure 4.12: Gravitational signal (solid line) and gravitational gradient signal (dashed line) of three finite 
disk mass sources with varying density, a set thickness of 31.8 mm and a radius of 10 m. The flat line 
(dash dot) shows the equivalent gravitational signal for an infinite disk of this thickness and density, the 
infinite disk has no gravitational gradient signal. 
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Figure 4.13:  Gravitational signal (solid line) and gravitational gradient signal (dashed line) of four finite 
disk mass sources with varying radius, a set density of 1000 𝑘𝑘𝑘𝑘.𝑚𝑚−3  and a set thickness of 31.8 𝑚𝑚𝑚𝑚 . 
The flat line (dash dot) shows the equivalent gravitational signal for an infinite disk of this thickness and 
density, the infinite disk has no gravitational gradient signal. 

 

These graphs give an indication of the relative differences that various geometries give to both 
gravity and gravitational gradient signals. Spherical or point sources fall off in signal strength with 
one on the distance squared while gradients fall off at one on the distance cubed. Large flat 
densities of mass however appear as static fields with lower gradient signals until the sensor is 
positioned further than one radius away from the mass disk. Figure 4.13 shows that the gravitational 
signal of real-world groundwater systems are likely to be flat when surveys are done close to the 
mass source relative to its size. Additionally, it clearly shows that while gradients are good at 
measuring small mass distributions that are more closely approximated as a sphere, the gradient 
signal quickly approaches zero for larger more homogeneous mass disks. 

 

Actual systems are made up of a continuous variation of density with varying length scales and 
strengths. This results in signals like the more complicated gravitational fields simulated in the 
following section. However, it is still useful to keep these two simple cases in mind as they allow 
some assessment of the observed signals. For example, the dams show up strongly in the gradient 
signal as they are more point source like and generate a strong gravitational gradient compared to 
the streams that have a more constant and wide mass distribution similar to the disk source. By 
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comparison the streams show a strong gravitational signal at all survey heights while the dams fall 
of in signal far more quickly. 

4.2.2 Building the toy world 

To simulate what a real-world groundwater gravitational signal would look like, a three-dimensional 
toy world of mass distributions was built based on the area around middle creek farm shown in 
Figure 4.14.  

 
 

 
 

 
Figure 4.14: Aerial view of Middle Creek simulation area (5 km x 5km white outline). Borehole locations 
marked with green pins. Image taken from Google earth, 2021 Maxar Technologies, Latitude: -30.48856, 
Longitude: 150.122738, Date: 2021-07-02. 

 

This area was chosen is it contains a number of borehole survey sights and has been well studied 
by UNSW hydrologists allowing us to make educated guesses on the likely distribution of 
groundwater in this system. The surface of the simulated world was informed using topographic 
data taken from the NSW Foundation Spatial Data Framework - Elevation and Depth - Digital 
Elevation Model (DEM). The voxel grid is made up of 1001(5000 m) by 1001(5000 m) by 75(74 m) 
voxels(distance) in the North, East and Vertical directions respectively. Figure 4.15 shows this world 
from the surface level followed by increasingly striped back voxel layers to the base groundwater 
level. The following subsections will detail the construction of this model. 
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Figure 4.15: Model world based on Middle Creek area. The world is made up of 1001(5000 m) by 
1001(5001 m) by 75(74 m) voxels(distance) in the North, East and Vertical directions respectively. The 
vertical axis is exaggerated by 10 in these figures for clarity, lines indicate 1m height contours. Section 
(a) shows ground level of the toy world where the topographic data was taken from the NSW Foundation 
Spatial Data Framework - Elevation and Depth - Digital Elevation Model. Section (b) shows the toy world 
with evapotranspiration areas made transparent these areas were generated based on the satellite 
imagery shown in Figure 4.14. Section (c) strips away the ground except for the streams and dam 
groundwater recharge areas and section (d) shows the baseline water level taken from the borehole 
groundwater level in drought years and limiting the depth below the surface to 20 m. This pulls up the 
effective base level water table in the higher areas. 

 

4.2.2.1 Tree coverage and evapotranspiration 

The effects of evapotranspiration are often brought up as one of the hardest to measure 
mechanisms for water loss in a system. To investigate the feasibility of using gravimetry to measure 
this loss of water a simple evapotranspiration mask was generated for the simulation from the aerial 
photography. This was achieved by colour filtering the aerial image to find the dark green pixels 
typical of treed areas and then spatially filtering the resultant image to smooth the results to a small 
radius around each treed area. This mask is shown overlayed on the aerial imagery in Figure 4.16.  
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Figure 4.16: Middle creek farm simulation showing approximate areas of dense tree coverage (white) 
and hence areas of greater evapotranspiration. 

 

Within the simulation the mask was used to define areas of reduced mass down to 5 m below the 
surface. This was done to simulate the effects of trees and roots removing retained water from the 
soil. The result of this in the toy model can be seen in Figure 4.15(b). 

4.2.2.2 Stream and dams 

One of the identified contributors to groundwater recharge is from water streams. To add this effect 
to our model a simple algorithm to find surface waterflow was developed that is robust to the filtered 
NSW DEM data based on a D8 type method. Using this algorithm, the locations of Middle creek and 
Horesarm creek were identified in the simulation as shown in Figure 4.17. The dams in the simulation 
were identified by visual inspection of the aerial photography and their locations record and 
converted into the simulation coordinates. 
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Figure 4.17: Water stream flows (red) from a grid start point over the Middle Creek farm simulation. 

 

From each surface location of the streams and for each dam the toy world was altered to gently 
raise the water table up to this point. These new voxels were tagged in the simulation so they could 
be altered separately between dams and streams. The result of this can be seen in Figure 4.15(c) 
showing a raised water table along the streams and at each dam in the toy world. 

4.2.2.3 Baseline Groundwater 

The final layer of the model consists of the baseline groundwater level. This was generated by fitting 
a surface plane to the lowest borehole water table heights recorded at the peak of the previous 
drought. Due to a lack of boreholes across the full model area some approximations were made to 
keep the water table at a sensible depth. Additionally, a maximum water table depth from the 
ground surface was set at 20m resulting in a raised water table under some of the hills withing the 
model. This baseline level is shown in Figure 4.15(d). 

4.2.2.4 Rainfall groundwater 

An additional layer of simulation not shown in Figure 4.15 was to add an even distribution of mass 
to the top 5m below the surface to simulate an even dampening of the soil due to rainfall events. 
This layer of the model overlaps with both the evapotranspiration and the dam and streams 
groundwater voxels. 
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4.2.3 Gravitational simulation of toy world 

Gravity surveys of the modelled toy world are preformed using parallel computing and 
approximating each voxel as a point source and summing across all sources. The gravity signal for 

a point 𝑟𝑟 for a mass 𝑚𝑚 at point 𝑟𝑟′��⃗  is given by the following equation. 

𝑔𝑔(𝑟𝑟�⃗ ) =
𝐺𝐺𝐺𝐺𝑟𝑟�⃗

�𝑟𝑟�⃗ − 𝑟𝑟′���⃗ �
3 

Similarly for the gradient it is given by taking the derivative of the above equation for each cartesian 
direction. 

The results of this simulation could be improved by altering the equation to be the true gravitational 
signal of a rectangular prism voxel however by using a sufficiently fine grid the signals for each 
voxel can be closely approximated to a point source and still return meaningful results. For now, the 
only result where this has significant impact is in the ground level gravitational gradient survey, 
where the simulated signals are higher than expected due to the proximity to the surface level 
voxels. Future work to the simulation is planned to implement the rectangular prism gravitational 
equations and correct this result. An additional limitation is that some of the simulated fields show 
anomalous effects at the edge of the simulation due to the finite simulated world that would not 
exist in a real survey. 

One advantage of the way gravitational fields sum and scale is that for each gravitational survey, 
the results could be easily separated into the gravitational contribution of each modelled effect in 
the previous section. Additionally, the total amount of water for each of these effects could be 
checked to be reasonable and easily altered to show the signal some particular volume of water of 
that shape would have. 

A number of surveys were simulated across the full toy world following the topography at ground 
level, 10m above ground level, 50m above ground level, 186m above ground level and 500m above 
sea level (average of 186 m above ground level without following topography). A program was 
written to view this data that could switch between all gravity fields and their gradients, add levels 
of simulated noise to each survey and calculate and adjust the total volume of water from each 
modelled effect. 

4.2.3.1 Gravity survey results 

As mentioned previously, the primary goal of this part of the projects was to assess the feasibility of 
using gravitational surveys to measure ground water. To do this the realistic toy model world was 
created with the intention of discovering the expected magnitude of gravitational signals and how 
good sensors will need to be to be able to detect these signals. 

The results in Figure 4.18 show gravity in the 𝑔𝑔𝑧𝑧 direction at various heights. At ground level, close 
to the source of the signal it is easy to differentiate between the various contributors, with the 
evapotranspiration areas showing a reduction in the gravity signal of ~2 × 10−7𝑚𝑚. 𝑠𝑠−2 and the dams 
and streams showing an increase in the gravitational signal of ~12 × 10−7𝑚𝑚. 𝑠𝑠−2. As the survey 
height is increased, simulating the use of a drone or similar, these signals begin to decrease 
gradually in strength and blur out in position. As expected, the smaller sources such as the isolated 
dam groundwater falls of in strength quickly as the survey altitude is raised while the larger stream 
recharge groundwater maintains its signals due to the large area it covers. This is consistent with 
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the expected results shown in Figure 4.13. The result in Figure 4.18(d) shows that even with a greatly 
reduced water volume, a modest 1000 ML increase in groundwater recharge from the two streams 
would still be visible from a 50 m above ground level survey with a sensor that could measure down 
to 10−8𝑚𝑚. 𝑠𝑠−2. 

 

 

Figure 4.18: Gravity measured in the z (vertical) direction at a height above ground level of 0 m, 50 m 
and 186 m in (a), (b) and (c) respectively. In (a), (b) and (c) the system contains 21,481 ML of water 13,443 
ML in the stream groundwater, 3,350 ML from dam groundwater, 6,263 ML from surface rainfall and -
1,575 ML removed from evapotranspiration. (d) shows the simulation with only 1000 ML of water 
contained in the stream groundwater at a height of 50 m above ground level. All measurements include 
Gaussian noise with a standard deviation of 10-8 m/s/s. 

This result is promising as portable sensors that can measure down to this level are already 
commercially available, meaning changes in gravity of this magnitude are feasibly measurable. 
However, currently all such available sensors are classical gravimeters that drift at rates of 
~2 × 10−7𝑚𝑚. 𝑠𝑠−2 each day and as a result, the sensor may drift over the expected highest magnitude 
signals in as little as five days. 

With the ongoing development of quantum gravimeters this drift parameter is expected to 
significantly improve as the sensors are locked to atomic references and will not require calibration. 
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4.2.3.2 Gravity gradient survey results 

The vertical gravity gradient in the vertical direction 𝐺𝐺𝑧𝑧𝑧𝑧 is the next most utilised gravitational signal 
in existing surveys. Measuring gravitational gradients has benefits compared to gravity 
measurements as it removes any common vibrations or acceleration of the sensor. Because of this 
it is the typically preferred approach for most airborne surveys. 

 

 

Figure 4.19: Gravity Gradient measured in the Gzz (vertical) direction at a height above ground level of 0 
m, 50 m and 186 m in (a), (b) and (c) respectively. In (a), (b) and (c) the system contains 21,481 ML of water 
13,443 ML in the stream groundwater, 3,350 ML from dam groundwater, 6,263 ML from surface rainfall 
and -1,575 ML removed from evapotranspiration. (d) shows the simulation with only 1000 ML of water 
contained in the streams at a height of 50 m above ground level. All measurements include Gaussian 
noise with a standard deviation of 10-11 /s/s. 

The results shown in Figure 4.19 match the survey scenarios in the previous gravity measurement 
but show some expended different behaviour. Firstly, Figure 4.19(a) has the most unreliable data 
from the simulations and shows signals of a far greater magnitude that would be expected from the 
discussion and results in Figure 4.13 due to the point source approximation used. The results from 
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the higher altitude surveys are sufficiently far from the computational grid and should be more 
reliable. 

One of the primary points of difference of the gradient signal is that it is better at resolving smaller 
sources at higher altitudes with more sharply defined edges on dams and streams. It is also more 
sensitive to point sources and suffers from a lower signal over large flat surfaces like the streams. 

4.2.3.3 Optimal quantum sensor and survey design 

The simulation results from this study give minimum sensitivities required through the expected 
signal strengths, 1 × 10−7 m.s−2 for gravity and 1 × 10−9s−2 for gradients. However further work is 
required on the inversion front to investigate the optimal measurement configuration and grid. 
Qualitatively the simulation shows that a large amount of data can be generated from a simple 
vertical gravimeter (the most likely first iteration of these devices) and as such is a good candidate 
for field trials. 

Additional thought will be required for handling position and altitude corrections prior to field 
surveys. The gradient of earths field results in changes in gravity of 3 × 10−6𝑚𝑚. 𝑏𝑏−2 over 1 meter of 
altitude difference. This gives a minimum required altitude precision of ~0.1 m for 3 × 10−7𝑚𝑚. 𝑏𝑏−2 
stability. Systems such as differential GPS may be required for reliable position and particularly 
altitude data, other alternatives include lidar positioning or local positioning systems. 

4.2.3.4 Future works 

A number of improvements to the simulation code need to be made, especially to clarify the results 
of gravity gradient signals. 

Field trials and validation as discussed above. 
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4.3 Satellite gravity measurements of Australian water 

Paul Tregoning 
ANU, Canberra 

4.3.1 Introduction 

Space gravity observations from NASA’s Gravity Recovery and Climate Experiment (GRACE) and 
the GRACE Follow-On (GRACE-FO) missions provide unique estimates of changes in total water 
storage on spatial scales from global/continental to basin/sub-catchment [14]. 

The distance between two satellites orbiting Earth is sensitive to changes in the strength of the 
gravity field, changes that are caused by adding/removing mass from locations on Earth, including 
water, ice, earthquake deformation and mantle convection. In Australia, changes in mass are 
dominated by hydrological processes. Thus, the changes in water resources in Australia can be 
estimated from the inter-satellite measurements of these space gravity missions.  Although 
providing unique information, the estimates of changes in total water storage are of a spatial scale 
of hundreds of kilometres, which limits the immediate utility of the estimates of changes in total 
water for many specific hydrology applications. 

 

 

 

Figure 4.2320: Artist’s impression of the GRACE Follow-On mission satellites (source: 
https://gracefo.jpl.nasa.gov/mission/overview/) 

 

In this sub-project, an assessment was made of what space gravity observations can contribute to 
the understanding of managing water resources. The study included assessments of the ability to 
resolve a simulated change in water volume from space gravity observations, including the broad-
scale mapping of how the significant rain events in 2019 and 2020 propagated across NSW. In 
addition, an assessment was made of whether it is possible to track floodwaters from southern 
Queensland as they flowed into NSW after the March 2020 flooding events. 

https://gracefo.jpl.nasa.gov/mission/overview/
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4.3.2 Spatial Resolution 

The inherent spatial resolution of estimates of changes in total water storage (TWS) from GRACE 
and GRACE-FO mission data is ~300-400 km [15] [16]. This is essentially governed by the fact that 
the satellites are typically orbiting Earth at an altitude (i.e. height above the surface of Earth) of 400-
490 km. Reducing the altitude of the satellites in their orbit would increase the spatial resolution of 
the results, but also increases the atmospheric drag experienced by the satellites and, therefore, 
reduces the lifetime of the missions. Thus, users of GRACE/GRACE-FO data are likely limited to this 
level of achievable spatial resolution. 

Nonetheless, there are many estimates of TWS that are provided at higher spatial resolution. Time 
varying gravity fields, in the form of spherical harmonics, are provided by the mission to 
degree/order 96, which equates to ~180 km, but this is not really the achieved spatial resolution. 
Mass concentration elements (mascons) are also used to represent the temporal gravity field by 
estimating a change in thickness of a plate of water across a tile of known area on the surface of 
the Earth. Mascon solutions [17] have been produced at spatial resolutions of 3° (~330 km, [18] 1° 
(~110 km,  [19];  [20]) and 200 km [21]. The latter three studies state explicitly that this is not the actual 
spatial resolution of the estimates. 

When the spatial resolution of the parameters used to estimate the changes in mass is smaller than 
the inherent accuracy of the GRACE/GRACE-FO data, high correlations occur between parameters. 
This causes “leakage” of signal, or a smearing of the mass changes between neighbouring 
parameters, which reduces the inherent accuracy of the solutions. For example, a significant mass 
change in one location may be under-estimated, with the remainder of the mass change signal 
being incorrectly assigned to neighbouring mascons. 

 

Figure 4.2421: Simulated signal in the Maules Creek region (left) and values estimated (right). The error 
in the estimated signals is caused by a) the mismatch in the location of the signals and the spatial pattern 
of the mascons used to estimate the signal, b) the correlations between the mascon parameters, and c) 
the fact that the signal magnitude changes on spatial scales smaller than the mascon parameters. 
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In an ideal case, the estimated signal in this simulation would match perfectly the actual signal that 
was used to create the truth orbits. This does not occur, for several reasons. First, the mascon 
estimates are made at a spatial scale of 200 km, which is below the inherent accuracy level of the 
GRACE/GRACE-FO data, meaning that there are high correlations between neighbouring mascon 
parameters. Second, the magnitude of the simulated signal varies at spatial scales of ~18 km, 
whereas the mascon estimates are really an average of such signals, made at the ~200 km scale. 
Third, the spatial pattern of the mascons used to estimate the signal doesn’t match perfectly the 
spatial pattern of the simulated signal to be recovered. 

The first issue can only be resolved by using larger mascons. However, doing so actually increases 
the importance of the second issue, since there will be greater variability of signal magnitude within 
larger mascons. The third issue cannot be resolved unless the spatial pattern of the mass changes 
is known in advance, which is unlikely to be the case. 

4.3.2.1 Presence of Signal in the simulated observations 

A recent study by Han et al. [22] identified an abrupt surge of water storage of around 60-70 trillion 
km3 during the March 2021 significant rain events. They assessed the inter-satellite measurements 
along the ground track of the flight of the satellites and used these measurements to quantify the 
changes in water volumes. This approach has the potential to provide estimates with a lower 
temporal latency and, possibly, higher spatial resolution. 

To assess the viability of this new approach, the inter-satellite observations from the Maules Creek 
simulation were assessed along the ground tracks.  The observations used to estimate the temporal 
gravity field shown in Figure 4.24 are the inter-satellite range acceleration (the double time 
derivative of the change in distance between the satellites – see Allgeyer et al. [21] Even though the 
water change signal on the ground is relatively small – in this case a maximum of 150 mm – the 
effects of it are present in the range acceleration observations. The magnitudes of the range 
acceleration observations are plotted on the ground tracks (the flight paths of the satellites over 
NSW) in Figure 4.25. 

The spatial pattern of the simulated signal is not clearly evident. While large negative signals are 
present in the range acceleration observations when the satellites pass directly over the water 
volume changes (lower panel of Figure 4.25), significant positive signals are also present in advance 
of and after the satellites fly over the mass change locations. In addition, range acceleration 
observations on ground tracks that do not pass directly over the region of simulated mass change 
also contain non-zero signals. These relate to the volume changes that are physically located to the 
side of the ground tracks, not to changes directly below the satellites. 

Therefore, the range acceleration observations along any ground track are the sum of water volume 
changes directly beneath the satellites plus changes within ~1000 km of the ground track of the 
satellite pass. The strong negative signal as the satellites pass over a location with a positive water 
volume change does dominate the observations, which may indicate some utility of this method for 
tracking water flows through the Australian landscape. 
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Figure 4.2522: Range acceleration residuals along the ground track of the satellites for the simulation 
of mass change in the Maules Creek region shown a) globally and b) over eastern Australia. Orbits were 
calculated using satellite locations in July 2016. c) time series of range acceleration residuals as the 
satellites passed over the simulated signals in the Maules Creek region. While there is a negative peak 
at the spatial location of the simulated mass change, there are also lobes of positive signal north and 
south of the mass change. 

 

4.3.3 Analysis of GRACE/GRACE-FO data 

To demonstrate the capability of space gravity data to estimate water signals in Australia, the 
GRACE-FO data were analysed for 2019 and 2020. The analysis was done using the ANU GRACE 
software, as described in Allgeyer et al. [21]. Mass concentration (mascon) tiles of ~40,000 km2 
(roughly 200 km x 200 km) were used, consistent with the geometry used in the Maules Creek 
simulations described above. 

4.3.3.1 Spatial analysis 

Using January 2019 as a reference month, changes in water (expressed as a thickness of equivalent 
water height) have been calculated across eastern Australia. January 2019 was a very dry period, 
being at the end of the ~3-year drought across eastern Australia; therefore, the changes in water 
seen across the landscape represent the replenishment of water resources. 

The intense rainfall event that occurred around Townsville, 28 January to 8 February, is clearly 
evident and the progression of water southward into NSW is well captured. Note that the increases 
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in NSW shown in Figure 4.26 will be the sum of both water flowing south from Queensland and rain 
that fell in NSW. 

 

 

 

Figure 4.236: Left: Total water storage across eastern Australia February to July 2019. Right: February 
to July 2020. In both cases January 2019 is used as the baseline. Hydraulic activity such as the onset 
of the dry season in the Top End (darker red indicating a reduction in water volume), or the flow of water 
from monsoonal storms in Queensland, down the Channel Country to NSW, can be observed. 

 

The la Niña season in 2020 also contributed significant rainfall over eastern Australia. Again plotted 
using January 2019 as a reference, the strong influx of water in southern Queensland, propagating 
southward into NSW, can be seen in  

4.3.3.2 Along-track range acceleration analysis 

Large rain events provide natural experiments where space gravity data might be able to track the 
movement of very large flows of water down river systems. The rain event in March 2020 was used 
to assess the information contained in the range acceleration residuals of the GRACE-FO data, using 
the method described in the simulations above but applied to real data. The information is shown 
as a series of 5-day ground tracks in Figure 4.23. 

The pattern is quite complex to interpret. Because real observations have been used here, the 
values plotted along the ground tracks include not only the water signals of interest but also a 
variety of errors/noise from a number of different sources (e.g. mismodelling of the satellite orbits, 
actual instrument/observation noise, errors in background models used in the analysis etc). While 
noisy, these are the observations that were used to create the monthly map for March 2020 shown 
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in Figure 4.29; therefore, the required signals of the water changes are present in these 
observations along the ground tracks. It is beyond the scope of this current project to determine 
with what spatial and temporal resolution such information can be extracted, but there is definitely 
potential here to be able to quantify water mass changes located within river systems. 

 

 

Figure 4.249: Inter-satellite range acceleration residuals in 5-day maps, plotted beneath the locations 
of the satellites. A negative residual indicates the presence of more water than average. Ground track 
coverage can only be densified by stacking additional days together, but this does not preserve the 
time-varying nature of the information that is required to track the flow of water from QLD to NSW during 
this time period. 
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4.3.4 Future Work 

Terrestrial-based gravity measurements using cold atom gravimetry provide a means of sensing 
very localised changes in water stores, but this observing technique doesn’t upscale easily to basin-
scale or state-level studies. In situ groundwater bore measurements provide hydraulic head 
information but extrapolating point-wise measurements over large spatial areas can lead to errors.  
Knowledge of the porosity of the subsurface structures is also required to convert borehole 
measurements of groundwater level into groundwater volume. 

A combination of space gravity data, satellite-based measurements of shallow soil moisture and in 
situ terrestrial measurements can provide both broad-scale and fine-scale quantification of changes 
in water. Integration/assimilation of space gravity data with in situ measurements has the potential 
to enhance the utility of all these measurement types. The combination could lead to detailed, small-
scale knowledge from point-wise measurements in specific places (e.g. along river courses) infilled 
with broad-scale information from satellite measurements. 

Use case: loss of environmental flow waters 

One of the use cases considered in this project related to whether it was possible to determine 
what happens to the “missing water” that is released in environmental flows but doesn’t arrive at 
the intended location. This is a difficult problem to resolve for a number of reasons. First, the flows 
are small in magnitude and spatial extent, making them difficult to detect with satellite observations. 
Second, there is often a relatively long path downstream along which water can be lost from the 
river. Third, it is not evident how to determine by observation whether water is lost through 
evaporation, theft or through recharging of groundwater. 

Satellite measurements offer one of only a few possibilities for providing insights into this issue. 
Evaporation of water would cause a reduction in mass which, in principle, is detectable through 
measurement of gravity change. In contrast, recharge of groundwater aquifers is a change in vertical 
location of mass and would not cause a discernible change in gravity. Water theft would cause a 
horizontal translation of water from river to on-farm storage which, in principle, is detectable through 
gravity measurements and also by detection of changes in water levels in dams/reservoirs etc. 

A careful study is needed to determine whether it is possible to use the space gravity measurements 
along the ground track of the satellites to detect changes in river flows. Australia has experienced 
a number of large flood events in the past few years, causing significant flows down many river 
systems. These events could be used as case studies, including comparisons with in situ river height 
measurements, to ascertain to what extent a combination of space gravity and satellite altimetry 
(used to measure water heights from satellites) can address the issue of the loss of environmental 
water flow. Existing satellite data could be used in a desktop study, since both space gravity and 
satellite altimetry data are available since 2002. 
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4.4 Where is All the Water?: Probabilistic Modelling Framework 

R. Willem Vervoort, Joshua Simmons, Gilad Francis, Richard Scalzo  
DARE ARC Training Centre, The University of Sydney 
January 2022 

4.4.1 Executive Summary 

Previous NSW government reports have identified large-scale "unaccounted differences" in the 
water balance across numerous NSW catchments. These volumes are typically around 20% of 
inflows [23] ,but may occasionally reach 50% of inflows in some catchments [24]. These numbers 
tend to be comparable to overall licensed extractions, as well as to surface water recovery volumes 
under the Murray-Darling Basin Plan, making uncertainty in the water balance a major source of risk 
for decision-making in water management. The DARE component of the Where Is All The Water? 
(WIATW) work program develops a probabilistic modelling framework to explain and quantify 
unaccounted differences in the NSW General Purpose Water Accounting Reports (GPWARs) for 
major rivers up to catchment scales. The proposed probabilistic modelling framework is based 
around the application of well established Bayesian inference techniques. This report builds on the 
conceptual Bayesian inference approach to the probabilistic modelling framework outlined in the 
previous Milestone 1 report. In this pilot project, the uncertainty quantification of three components 
of the system is demonstrated focusing on the years 2019 - 2020. 

• The uncertainty in estimating the evaporation and transpiration from river reaches and 
riparian zones. 

• The uncertainty in estimating the surface water groundwater connection and groundwater 
flow given river reach and groundwater observations. 

• The uncertainty in the estimated rating curves at gauges in the river. Furthermore the 
intended deliverables from future stages of this work focus around: 

• A priority ranking for the various sources of uncertainty to guide investment in data 
collection aimed at reducing the overall uncertainty in the water accounting along this reach 
of river. 

• A framework for determining the optimal configuration when designing new data collection 
programs. For example, to assist in deciding on the spatial placement of new sensors or the 
temporal frequency Lidar surveys to minimise uncertainty. 

• A methodology that can be integrated into the NSW GPWARs to provide a better 
quantification of the uncertainty in the reported water balance terms. 

• A methodology that can assist with the inversion of quantum sensor data to estimate the 
groundwater recharge and storage. 

This report describes the overall water balance problem with a focus on several of the key physical 
parameters, giving them a mathematical description with associated uncertainty. Simplified proof of 
concept calculations are undertaken to quantify the uncertainty, which can be incorporated in future 
work into the probabilistic modelling framework for the overall water balance. 
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4.4.2 Introduction 

The Where Is All the Water? (WIATW) work program aims to explain unaccounted differences in the 
General Purpose NSW water accounting for major rivers8 (GPWARs) [25] [24] [23], and to determine 
the role of data from new sensor deployments (low-cost environmental sensors, space-based large-
scale gravity and ground-based cold-atom gravity) in helping to close the water balance. The 
unaccounted differences in the river system accounting tend to be comparable to overall licensed 
extractions, as well as to surface water recovery volumes under the Murray-Darling Basin Plan, 
making uncertainty in the water balance a major source of risk for decision-making in water 
management. 

Bayesian approaches in hydrology in general have concentrated on parameter inference [26]. In 
contrast, there have only been few examples of full Bayesian modelling of the water balance [27] 
[28] [29], although ground- water modelling [30] and spatial integration of runoff [31] has been done. 
The reason for this is most likely the difficulty in deriving a closed form solution of the water balance 
and associated differentiation to be able to account for uncertainties in both time and space. 
Bulygina and Gupta [27] concentrated on a data assimilation approach assuming an unknown model 
structure to make forward predictions of the streamflow. More recently, Ossandon [29] developed 
a hierarchical model of a river network for daily ensemble streamflow forecasting. In contrast, Smith 
and Gronewald [26] developed a model to describe the water balance of the Great Lakes in the 
USA and to estimate the uncertain inflows, which is likely the closest comparison to the work here. 

In an earlier report [4] for this project (hereafter "Milestone 1 report"), highlighted that while 
uncertainty in complex systems is unavoidable, it can be quantified using different methods. A 
Bayesian probabilistic modelling framework to systematically quantify the uncertainties across the 
river system was proposed, and the overall time investment to develop for the Namoi catchment 
was presented. The probabilistic modelling framework is useful up to catchment scales, for the 
purpose of making water management decisions at the state level in NSW under uncertain 
conditions. Models made under this framework may be used to cost-optimally acquire new data 
sets, in order to reduce the prediction variance for future management decisions. 

Development of the overall framework is well beyond the scope of the current project. However, as 
part of the Where is All the Water? project three potential "use cases" were developed for which 
different applications could be tested. These use cases are: 

• Low flow (Dry) use case, focussing on a short river section between Lake Keepit and 
Gunnedah in the Namoi river for 2019; 

• High flow (Wet or flooding) use case, concentrating on the Namoi catchment downstream 
of Narrabri and mostly for 2020 and 2021; and 

• Large scale use case (flood), concentrating on the Darling from the Queensland border to 
Menindee Lakes, most likely also using 2021 as an example year. 

The aim of this report from the University of Sydney’s DARE ARC Training Centre is to produce a 
pilot study for the probabilistic modeling framework for the dry use case. 

 
8 https://www.industry.nsw.gov.au/water/allocations-availability/water-accounting/gpwar 
 

https://www.industry.nsw.gov.au/water/allocations-availability/water-accounting/gpwar
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4.4.3 The Model 

The overall conceptual framework developed earlier in the Milestone 1 report conceptualises the 
river system as a space time model that includes all the different fluxes identified in Figure 4.30. In 
the sections below, the hydrological model is explained in more detail followed by a section 
outlining the general statistical modelling approach using Gaussian processes. 

 

Figure 4.3025: Conceptual river system diagram for the framework. 

 

4.4.3.1 Hydrology 

4.4.3.1.1 Rainfall Runoff 

Starting from the top of the catchment, the first input into a river is generated by a rainfall-runoff 
model. In essence this is: 

 
𝑄𝑄(𝑡𝑡)  =  𝑃𝑃(𝑡𝑡)  −  𝐸𝐸𝐸𝐸(𝑡𝑡)  −  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+  𝜖𝜖 =  𝑓𝑓(𝑃𝑃,𝐸𝐸𝐸𝐸, 𝑆𝑆, 𝑡𝑡,𝜃𝜃)  +  𝜖𝜖 
(11) 

The general structure of hydrological models consists of the inputs and outputs Q(t) (the streamflow 
flux in mm/day), P (t) (the rainfall/precipitation flux in mm/day) and ET (t) (the combined 
evapotranspiration flux in mm/day); and parameters θ. In practice hydrological rainfall-runoff models 
can have any number of parameters to describe different delays within the system (linked to 
storage). Note that in this case P (t) S(t) and ET (t) are presented as "catchment average" values, 
representing the average of a distribution in space. As such, a description of the variability and 
uncertainty in space is required to characterise these distributions. 

In hydrological modelling variables are generally reported as a "length" (mostly mm), representing 
area weighted averages. Within the ϵ term, any leakage out of the actual modelled catchment is 
also accounted for. 

In essence this means that the overall "error" ϵ can be defined as 
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 𝜖𝜖 =  ∑(𝜖𝜖𝑃𝑃(𝑥𝑥,𝑦𝑦), 𝜖𝜖𝐸𝐸𝑇𝑇(𝑥𝑥,𝑦𝑦), 𝜖𝜖𝑆𝑆(𝑥𝑥,𝑦𝑦), 𝜖𝜖𝜃𝜃(𝑥𝑥,𝑦𝑦), 𝜖𝜖𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒) (22) 

 

In other words, the overall "uncertainty" of any hydrological model is not well specified and includes 
the cumulative uncertainty of the different input variables and the miss-specification of the model 
[32]. 

From the top of the catchment, the water passes the first gauging station, which can be used to 
constrain θ in the rainfall-runoff model, providing the closure on the water balance. Moving down 
the catchment, sections of the river (i.e., river reaches) can be modelled individually knowing the 
input from upstream [29]. 

 

4.4.3.1.2 River Reach 

From the first gauging station the water travels through the river reach, which can be considered a 
closed sub-system between two gauging stations. In other words, the basic water balance applies: 

 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡)  =  𝑄𝑄𝑖𝑖𝑖𝑖(𝑡𝑡)  +  𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 −  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 −
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 
 
+  𝜖𝜖  (33) 

 

Here Qout(t) is the streamflow at the downstream station(s), while Qin(t) is the streamflow at the 
upstream station(s). Defining the gains and losses is more complicated as some of these are "known 
unknowns", but there may also be "unknown unknowns". In the latter case, the water balance cannot 
be closed, leading to an increase in the ϵ term visible in the uncertainty quantification. In Figure 4.30 
the following processes are indicated: 

• Groundwater and surface (GW-SW) interactions 

• Evapotranspiration and environmental water use 

• Ungauged inputs (a gain) 

• Licensed extraction 

• Stock and domestic extraction 

Further processes that could also be considered are: 

• In channel rainfall (a gain) 

• Irrigation return flow 

• Sewage Treatment Plant discharges 

• Overbank flows and floodplain losses 

All of these processes would require some sort of definition of the process or rate that determines 
the flux. Plenty of complex models exist in the hydrological literature, but as a first approach a 
simpler description might suffice. This can then subsequently be extended to more complex models. 
All these fluxes in turn have associated parameters and uncertainties which are summarised for the 
variables examined in this report in Table 4.6 and for other components of the overall probabilistic 
framework in the Milestone 1 report. 
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Table 4.6: Summary of processes which have been examined in this report (see Section 4), 
corresponding conceptual/mathematical models, data available to constrain them, and associated 
uncertainties. 

Process Conceptual model Data Uncertainties 

Stream flow 
(length/time) 

Rating curve fit 
relating 
river height 
to river flow 

Continuous river 
levels; discrete 
flow 
measurements 
at gauge 
locations for 
rating 
curve generation 

Uncertainty in the discrete 
measurements 
and the integration of the discrete 
measurements 
with the continuous data; uncertainty 
in the conceptualisation of the rating 
curve 
model and uncertainty in the rating 
curve 
model calibration ( 20 – 40%, see 
Tomkins, 
2014); uncertainty in the model 
conceptualisation 
of the process 

Reach length 
groundwater 
losses and gains 
(length/time) 

Simple resistance 
(Darcy) or more 
complex gradient 
based loss 
equation using 
conductivity 
estimates 

Groundwater 
level changes 
from “nearby” 
groundwater 
bores (length); 
Australian soil 
information 

Uncertainty in groundwater level data; 
uncertainty 
in spatial integration of the Australian 
soil information; uncertainty in the 
connectivity between river and 
groundwater; 
uncertainty in the spatio-temporal 
model 

Land-based 
evapotranspiration 
(ET) 
(length/time) 

Penman-Monteith 
or derivatives 

Measured 
continuous 
climate data: 
radiation, 
temperature, 
windspeed, 
humidity 

Uncertainty in actual climate data; 
uncertainty 
in the Penman-Monteith model; 
uncertainty 
in the spatio-temporal model due 
to sparse data and spatial model fitting 
(including 
kernel/variogram estimation); 
uncertainty 
in the riparian fringe around the 
river; uncertainty in vegetation map or 
fractional 
cover derived from satellite data 

Stream and lake 
evaporation 
(length/time) 

Penman-Monteith 
or derivatives 

Measured 
continuous 
climate data: 
radiation, 
temperature, 
windspeed, 
humidity 

Uncertainty in the spatio-temporal 
model 
(see land-based ET); uncertainty in 
surface 
water area through time to understand 
total 
volumetric losses given only sparse 
water 
level measurements 
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4.4.3.2 Statistical modelling with Gaussian process regression 

Many of the sources of model uncertainty can be described in terms of unknown or uncertain 
spatiotemporal functions. Although these can be described using familiar parametric forms such as 
polynomials or splines, with uncertainties on the coefficients, we will find it convenient below to look 
at non-parametric ways of specifying random functions. Gaussian process regression (aka kriging) 
provides a convenient way to do this, where the posterior predictive distribution (our preferred way 
to quantify uncertainty in random functions) can be calculated in closed form using linear algebra 
operations. 

The Gaussian process formalism is used in multiple sections below so we briefly review them and 
develop some notation here. Gaussian processes can be thought of as distributions over functions 
to be fit to data. The properties of the functions drawn from the distribution are usually specified in 
terms of a symmetric, positive definite kernel function K(x, x′; Λ), describing the covariance between 
two evaluations with different feature vectors x and x′, possibly as a function of hyperparameters 
Λ. The feature vectors can be locations or time points in the case of spatiotemporal models, or can 
be other ordinates such as river heights or flows if the function being fit is, for example, a ratings 
curve. The hyperparameters Λ include important scales in the problem such as length scales, time 
scales, noise variances, and so forth. For example, a commonly used kernel is the square 
exponential kernel 

 
Κ(x, x′;  𝑆𝑆0,ℓ) = 𝑆𝑆02 𝑒𝑒𝑒𝑒𝑒𝑒�

−‖𝑥𝑥 − 𝑥𝑥′‖2

ℓ2
�  

(44) 

 

where x and x′ might represent spatial locations, S0 is an amplitude and ℓ a characteristic length 
scale over which the function is smooth. 

Given data y taken at arbitrary covariates X = {xi}, assumed to have iid Gaussian noise with variance 
σ2, and a kernel function K(x, x′), the prediction for the gridded measurements y′ at locations X′ is 
multivariate Gaussian with mean and covariance 

   𝜇𝜇𝑦𝑦′ =  Κ𝑥𝑥′𝑥𝑥(Κ𝑥𝑥𝑥𝑥 + σ2 I)−1y (55) 

 

 Σ𝑦𝑦′ =  Κ𝑥𝑥′𝑥𝑥′  −  Κ𝑥𝑥′𝑥𝑥(Κ𝑥𝑥𝑥𝑥 + σ2 I)−1Κ𝑥𝑥𝑥𝑥′ (66) 

 

where KXX′ is the matrix with elements K(x, x′) for each pair of station and grid locations. Any linear 

operation on gridded data described in terms of a matrix α = Ay′, including area-weighted averages 
or numerical integration, is Gaussian-distributed with mean Aμy′ and variance AΣy′AT . 

4.4.4 Case Study 

As a case study, a focus has been placed on the period of the 2019/2020 GPWAR (see 2 for water 
level and rainfall data over this period) which covers the "Dry" use case as mentioned in the 
Introduction (1). The specific river reach used, which is the Namoi River from Keepit dam to 
Gunnedah (see 3 for area map) including the Peel confluence, covers the following gauging stations: 

Inflow: Gauge 419006, Peel River at Carroll Gap 
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Inflow: Gauge 419007, Namoi River at Downstream Keepit dam 

Inflow: Gauge 419084, Mooki River at Ruvigne 

Outflow: Gauge 419001, Namoi River at Gunnedah 

 

 

Figure 4.3126: Daily mean water level (m above gauge zero) at the inflow and outflow gauges and daily 
sum rainfall (mm) at the Gunnedah Pool station (55023) over the study period from 2019 to 2020. 

 

Using the "Dry" use case and focussing on a section with no major urban development means that 
ungauged inputs, licensed extraction from urban utilities, and overbank flow and floodplain losses 
can be ignored. Furthermore, in-channel rainfall is assumed to be negligible. 

In the following subsections the proposed model structure will be further described including 
possible priors for each of the remaining components for a low flow period between two gauging 
stations. Results of sub components that have been developed will be highlighted in each section. 
With these assumptions the overall balance equation becomes: 

 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) = 𝑄𝑄𝑖𝑖𝑖𝑖(𝑡𝑡) − �𝐸𝐸𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑥𝑥,𝑦𝑦) + 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥,𝑦𝑦)� − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠 − 𝐺𝐺𝐺𝐺𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦)

+ 𝜖𝜖 

(77) 

 

In this equation ETenv is the evapotranspiration of the environment and E is the evaporation from 
open water in the river channel. These terms are discussed further in Section 3.1. 

Licensed extractions along the river reach were obtained from WaterNSW/DPIE to develop a time 
series of the licensed surface water extractions (Pumplicence). However, including these will be part 
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of future work and licensed extractions have been ignored in the present study. In addition, there is 
no detailed data for extractions for stock and domestic extractions. For this specific report, we are 
ignoring all extractions and are assuming that all stock and domestic water needs are addressed 
using groundwater extractions from deeper groundwater sources. In future work, this can be added 
to the model uncertainties. Stock and Domestic extractions could be assessed using a simple 
function that relates daily temperature to stock and domestic use (Pumpsd), i.e.: 

 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠 = 𝛽𝛽𝑜𝑜 + 𝛽𝛽1 × Temperature𝑚𝑚𝑚𝑚𝑚𝑚+∈ (88) 

 

The means that the main processes to be estimated in the model in this report are the uncertainty 
in the gauging, evapotranspiration and environmental water use, and the groundwater - surface 
water interaction ( GWSW (x, y) ). Note that the groundwater - surface water interaction can be both 
positive and negative, representing either a loss or a gain of water. 

 

Figure 4.3227: Map of the case study area (Source: NSW Government). Note: gauging station 419041 
has not been used as it is the storage gauge for Keepit Dam. 
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4.4.4.1 Evapotranspiration and environmental water use 

This flux consists of two parts: 1) the open water evaporation from the river, and 2) the transpiration 
and evaporation from the ecosystems in the riparian zones and parts of the river bed with no 
standing water. 

4.4.4.1.1 Open water evaporation 

A first approximation of the open water evaporation, which only occurs if surface water is present 
in the river, is shown below:: 

 𝐸𝐸𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(x, y) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥,𝑦𝑦)  × 𝐸𝐸𝑜𝑜(x, y) + 𝜖𝜖 (99) 

 

The point potential evaporation based on the location in the river E0(x, y) is calculated using: 

 𝐸𝐸𝑜𝑜(x, y) = (ETrx, y) × Kc (1010) 

 

with the crop coefficient (Kc) taken as 1.05 for open water and the reference evapotranspiration 
(ETr) calculated using the FAO Penman-Monteith equation (Allen et al., 1994): 

 
ETr =

0.408𝛿𝛿(𝑅𝑅𝑛𝑛 − 𝐺𝐺) + 𝛾𝛾 𝐶𝐶𝑛𝑛
𝑇𝑇 + 273𝑢𝑢2(𝑒𝑒𝑠𝑠 − 𝑒𝑒𝑎𝑎)

𝛿𝛿 + 𝛾𝛾(1 + 𝐶𝐶𝑑𝑑𝑢𝑢2)  
(1111) 

 

where Rn is the net radiation, G is the soil heat flux, δ the saturation vapour pressure-temperature 
slope, u2 the mean wind speed measured at 2 m, T the mean daily temperature, γ corresponding to 
the psychrometric constant, es to the saturation vapour pressure, ea the actual pressure vapour, 
while Cd and Cn are constants for standard short crops, equivalent to 0.34 and 900, respectively. 
Future work could further analyse this the uncertainty stemming from this equation itself, defining 
each of the inputs Rn, u2, T and ea with their individual uncertainties. 

For this phase of the study, a simplified approach has been adopted for obtaining the wetted area 
of the river for each point estimate Areariver(x, y) using Digital Elevation Model (DEM) data (obtained 
from the Commonwealth of Australia (Geoscience Australia) ELVIS portal) and water level data from 
the available gauges. 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ×𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (1212) 

 

The river length (Lengthriver) has been determined for each of the three reaches in the study area 
(Namoi River, Peel River and Mooki River), using watershed analysis on the 5 m DEM data of the 
region (collected in 2011). The time-varying river width (Widthriver) was determined at the available 
water level gauges mapping water level to width using cross-sections extracted from the available 
1 m (collected in 2014 and 2019) and 5 m DEMs in the area (see Figure 4.33 and Figure 4.34 for 
examples). At this stage it is assumed that the river width is constant along each of the river sections 
corresponding to the available gauges, with planned additional work noted in Section 3.1. The 
presence of "open water" in the reach is based on the water level measured at the gauging stations, 
masked using a threshold level. Below this level zero open water evaporation is assumed. 
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Figure 4.3328: An example of the water level to river width mapping at the downstream water level 
gauge 419001 (shown by the red marker in the top right plot). Multiple available DEMs show the variability 
stemming from measurement, processed resolution, and topography changes over time. 

 

For this study, the point reference evapotranspiration values (ETr(x, y)) have been interpolated (with 
as- sociated uncertainty) using a GP regression fit to calculated values at available weather stations 
in the SILO database [5]. Spatial variability of ET over the study period of interest as output from the 
GP is shown below in Figure 4.. The spacing of the output points at which both Ewater(x, y) and ETenv(x, 
y) were evaluated were determined using the length scales of the fitted GP kernel (approximately 
0.13 degrees in both latitude and longitude). 

Future work could significantly improve the estimation of wetted area using a combination of DEM 
and satellite data and allow for the quantification of uncertainty in this term. An example of using 
water detection algorithms is outlined in [3], which can be translated to Sentinel data from the 
original MODIS approach. This approach can be applied for all cloud free images, which in the low 
flow use case considered here will probably result in the majority of images. Other useful datasets 
that could inform the wetted area term include the "Water Observations from Space" dataset [12] 
and associated "Hydromorphological attributes for all Australian river reaches" dataset [8] if the 
resolution of these data are adequate. 
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Figure 4.3429: An example of the water level to river width mapping at an available upstream water level gauge. 

 

 

Figure 4.3530:Standardised output of the GP output for ET r(x, y) showing the spatial variability across 
the study area. 

 

4.4.4.1.2 Environmental Water Use 

Environmental water use is defined as the amount of water used by the riparian vegetation that 
surrounds the river. Using satellite imagery we can identify areas of riparian vegetation, but we an 
also simply take a number of pixels away from the river as the "riparian fringe". For example a buffer 
of 100 - 200 m around the river can be interpreted as a "riparian fringe". For this simplified study, a 
fixed width of 100 m was chosen, excluding the open water river area as calculated in Section 3.1.1. 
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Initial results for both the evaporation and evapotranspiration components, incorporating the 
uncertainty in the interpolation of ETr(x, y), are shown below in Figure 4.36. The uncertainty in this 
case represents only the spatial variability in ET, rather than that of the total ET flux. Future work to 
quantify the uncertainty in the river width and length terms (as discussed in Section 3.1.1) is required 
to further develop this component and this will likely have a significant impact on the magnitude of 
the total uncertainty for the ET flux. 

To better estimate the evapotranspiration component and associated uncertainty, future work could 
incorporate the estimates of actual evapotranspiration at vegetated pixels in a buffer around the 
stream channel. 

 

Figure 4.3631: Initial results for evaporation and evapotranspiration along the length of river reach in the 
study area for January to April 2019. As noted in the accompanying text, this first-pass study only 
incorporates a small component (the spatial variability in ETr(x, y)) of the overall ET uncertainty and as 
such the uncertainty bands are narrow. 

 

This can be obtained, for example, using the CMRSET satellite evapotranspiration methodology [6] 
applied to Sentinel 2 and Landsat datasets (see [11]). This dataset would provide monthly AET data 
at 25 m resolution which could be used to generate time varying crop factors to be used with SILO 
daily ET data. Subsequently multiplying the derived AET by the area of the buffer will provide an 
estimate of the environmental water use. Lumping to larger areas will provide a variance of the 
estimate which can be also included in the uncertainty calculations. 

The original CMRSET paper by [6] provides RMSE values for the regression fit of the actual ET 
prediction model from the satellite reflectance, but does not provide direct error bounds for the 
parameters. Similarly, the new data set [11] also does not specify any uncertainty, which formally 
would need to be estimated. Satellite products generally define the accuracy of the observations 
and the instruments which can be incorporated in the calculations of the reflectance equations. 

4.4.4.2 Groundwater – Surface Water interaction 

The simplest way to represent the groundwater/surface water interaction (FGWSW) is using the 
effective water conductance (Keff ) and the difference in potential (h) between the groundwater 
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and the water level in the channel. Both of these water levels need to be scaled to the Australian 
Height Datum (AHD) or some other common datum. The flux of water flowing from the river into 
the ground is then usually calculated as 

 𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑥𝑥,𝑦𝑦) = 𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥,𝑦𝑦) × 
𝛿𝛿ℎ(𝑥𝑥,𝑦𝑦)
𝛿𝛿𝛿𝛿

+∈ 
(1313) 

 

Here FGWSW(x, y) is the groundwater/surface water interaction for the subsection under 
consideration, Keff (x, y) is the effective conductivity (rate of transmission of water per unit time) of 
the subsection, and h(x, y) is the water level and x is the distance between the observed water level 
in the stream and the observed water levelin the river channel. This version of the equation is a 
finite-difference approximation to Darcy’s law 

 𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒∇ℎ+∈ (1414) 

 

where now the groundwater head h is a differentiable function. In general h is well-known along the 
river, but for groundwater sites h is available only at sparsely situated groundwater bores. Equation 
14 also assumes that the river is connected to groundwater, which will depend upon the form of the 
spatial conductivity field Keff . There could also be several groundwater layers, so for this 
application, locations near the river are preferred in order to observe the shallowest available 
groundwater. 

The groundwater data can be easily obtained from https://realtimedata.waternsw.com.au/. Relevant 
groundwater bores for this case study along the reach would be: 

GW093001, GW093000, GW036271, GW036268, GW030307, GW036236, GW030305, 
GW030304, GW030303, GW030302, GW036237, GW036238, GW039338, GW036239, 
GW021087, GW021086, GW021085, GW030300, GW030299, GW030298, GW036272, 
GW036289, GW965580, GW965581 

These bores will be affected by groundwater pumping, which will affect the water table and 
therefore the gradient and groundwater surface water interaction. 

Note that Equation 14 does not describe a change in overall storage with time over some unit area, 
to put it on equal footing with the other processes. Some kind of enclosing contour or surface is 
needed with respect to which the change can be calculated. Additionally, it is not possible to infer 
Keff from the hydraulic head h based on Equation 14 in the given form, which doesn’t close the loop 
to derive any kind of likelihood for Keff in terms of the data for the hydraulic head h. 
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Figure 4.3732: Calculation of 2-D groundwater flux. Top: Hydraulic conductivity field Keff (assumed). Red 
crosses: training points (borehole positions). Orange dots: prediction points (for numerical integration). 
Middle: Gaus- sian process regression for hydraulic head (contours) with inferred groundwater flux 
(orange arrows). Bottom: Time derivative of hydraulic head based on Equation 15 (contours) with inferred 
groundwater flux (orange ar- rows). 

 

To incorporate the time dimension explicitly, we can connect Equation 14 to the change in stored 
volume in a column of water underneath an infinitesimal area element dA on the ground as seen 
from overhead. The volume is Sh dA, where S is the specific storage (of order a few percent), and 
the rate of change of volume is S(dh/dt) dA. Using the divergence theorem then gives us 

 𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

+ 𝑆𝑆−1∇ ∙ �𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒∇h� =
𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

+ 𝑆𝑆−1 (𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒∇2h +𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒 ∙ ∇ℎ) = 0 
(1515) 

 

which is a diffusion equation for h based on Darcy’s law. All other constant factors with physical 
dimensions have been absorbed into the definition of Keff . 

Spatial slices of h can be calculated from a GP regression on the data values taken at a given time 
t, and spatial derivatives can be obtained from the GP solution based on a cross-covariance kernel 
without having to re-train (see section 9.4 of Rasmussen & Williams 2006). This allows us to solve, 
analytically or using finite dif- ferences, for the spatial covariances of the derivatives and thus for 
the uncertainty in the flow of groundwater. Figure 4.37 shows the motion of groundwater under a 
synthetic assumed hydraulic conductivity field Keff , shown in the top panel. The interpolation is 
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done from a time slice of real hydraulic head near the Keepit- Gunnedah reach of the Namoi River, 
with boreholes shown by the red crosses; the coordinates have been transformed to physical units 
of kilometers. The orange dots show the locations of a denser grid of prediction points to be used 
for numerical integration. In the middle panel, level set contours of the regression for the hydraulic 
head are shown, together with the inferred flux FGWSW. The vector field shows sensible behaviour, 
with high (low) flux in regions of high (low) Keff , and with the flux vectors oriented at right angles to 
level contours of h. The bottom panel shows contours for the time derivative term with FGWSW 
superimposed. 

Since it is difficult to directly show uncertainties on the 2-D plots, Figure 4. shows a spatial slice 
through the regressions for groundwater head and its derivatives, including bands of uncertainties. 
In each case the bands of uncertainty are well-behaved. The solution is smooth on length scales of 
kilometers, reflecting the available groundwater bore data, and higher derivatives can be easily 
calculated with reasonable uncertainties attached. 

 

Figure 4.3833: A 1-D slice through the hydraulic head configuration from Figure 4.38. Blue: hydraulic 
head h relative to its mean value h¯.  Green:  latitude component of the hydraulic head gradient ∂h/∂x.  
Red:  the Laplacian 2(h). Orange: the time derivative term dh/dt = S−1 (Keff h) calculated from 
Equation 15. The error snakes show 68% uncertainty contours. 
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4.4.5 Future Work and Estimated Effort 

4.4.5.1.1 Future work: Inference over Keff  

Using Equation 15, we can predict the entire hydraulic head time series using GP regression, 
integrating each spatial slice forward in time to predict the following one. A forward Euler scheme 
is liable to destabilize quickly given the large time steps between seasonal measurements. A better 
choice is Heun’s method, a second-order Runge-Kutta method, with step size ∆t: 

 ℎ�𝑖𝑖+1 = ℎ𝑖𝑖 + 𝑓𝑓(𝑡𝑡𝑖𝑖 ,ℎ𝑖𝑖)∆𝑡𝑡 (1616) 

 

 ℎ𝑖𝑖+1 = ℎ𝑖𝑖 +
∆𝑡𝑡
2
�𝑓𝑓(𝑡𝑡𝑖𝑖,ℎ𝑖𝑖) + 𝑓𝑓(𝑡𝑡𝑖𝑖+1,ℎ�𝑖𝑖+1)� (1717) 

 

where f(ti, hi) = −S−1∇   (Keff∇hi) is formed from the spatial slice at time ti. Another possibility, if the 
condition number is small enough, would be to calculate A(δt) = exp(−δt S−1∇  (Keff∇)) and apply it 
directly to h. This can be done using the SVD decomposition to diagonalize a finite-difference matrix 
representation of the differential operator enclosed inside the exponential. 

Although the closed-form derivation is cumbersome, the action of integrating Equation 15 for some 
time interval δt is a linear operator A = A(δt) on hi, and therefore we can be sure that the prediction 
will also be a Gaussian process (Ahi, AKh AT ). In this way, a kernel for time correlations of a self-
consistent ground- water diffusion process is induced, so that we don’t need to specify it explicitly. 

The time integration of Equation 15 allows us to back out Keff , using the likelihood 

 
logℒ = −

1
2
�  
𝑁𝑁𝑡𝑡−1

𝑖𝑖=1

�(ℎ𝑖𝑖+1 − 𝐴𝐴ℎ𝑖𝑖)𝑇𝑇�𝐴𝐴𝐾𝐾ℎ𝑖𝑖𝐴𝐴
𝑇𝑇 + 𝜎𝜎ℎ2𝐼𝐼�

−1(ℎ𝑖𝑖+1 − 𝐴𝐴ℎ𝑖𝑖)

+𝑁𝑁𝑟𝑟 log 2𝜋𝜋 + log det𝐴𝐴𝐾𝐾ℎ𝑖𝑖𝐴𝐴
𝑇𝑇� 

(1818) 

 

where Nr and Nt are the number of boreholes and the number of time slices respectively. We can 
read this in terms of conditional probability as log P (hi+1 hi, Keff ) and use a GP prior on log Keff . 

This whole calculation can then be placed in an optimization or sampling loop for the parameters of 
Keff (i.e. the latent conductivity values at the boreholes and any other inducing points of our 
choosing), as well as all the GP hyperparameters which enter implicitly into Equation 18. While 
challenging, this is the sim- plest method known to us right now to solve self-consistently for Keff . 
It is a mesh-free numerical solution, potentially cheaper than a detailed finite-volume model along 
the lines of MODFLOW, that also respects the uncertainties in the spatial fields. 

4.4.5.1.2 Future work: Bayesian optimization of groundwater sensor locations 

No mention has yet been made of the dependence of the groundwater solutions on particular 
sensor place- ments. Although this represents future work as well, a framework follows directly from 
our descriptions of uncertainty here in terms of Gaussian processes. One of the conveniences of 
Gaussian process regression is that the posterior predictive variance (or co-variance) depends only 
on the sensor locations and not directly on the measured values. As a result, any function of the 
posterior predictive variance of a Gaussian process — such as the uncertainty for a flux of 
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groundwater in or out of a strategically important region — can be expressed as a function of 
additional future sensor locations. Sensors can then be appropriately placed to minimize the 
uncertainty. This is the most common overall strategy in the Bayesian optimization literature. 

As written, the current groundwater flux model depends on direct hydraulic head measurements 
based on groundwater bores. Additional borehole instrumentation can be evaluated directly. To the 
extent that the conductivity Keff is correlated with the void fraction (or porosity) fV , inference over 
Keff may also help to constrain fV and provide a connection to gravity sensor measurements. Since 
the gravity sensors are also linear functions of the underlying groundwater density, the groundwater 
model here can directly predict the influence of saturated-zone groundwater on gravity signal — at 
least for scales larger than the interpolation scale. Including both Keff and fV in the model would 
then allow us to determine relative costs and benefits of ongoing gravity monitoring versus borehole 
instrumentation, and optimize locations for any needed sensors. 

4.4.5.2 Qout(t) and Qin(t) 

Considering a river reach, the main direct measurements of flow would be based on river gauging 
data at the entry (Qin) and exit (Qout) points of the reach. River gauging data is based on a 
relationship developed between river height (which is fairly easy to measured) and river flow (which 
is harder to measure). 

There are a series of "Australian standards" around gauging, for which AS3778.2.3 is the main one, 
and this is incorporated in the BOM standards 3. However, uncertainties in the rating curves are not 
commonly derived, even though an Australian standard exists (AS3778.2.4) that gives some 
guidance. 

A rating curve depends on the the hydraulic properties of a stream channel. Quantifying these 
dependen- cies is hard in practice, hence rating curves are approximated with a fixed, usually small, 
set of calibration measurements (gauging). There are several challenges associated with deriving 
rating curves in this manner: 

Different flow regimes are characterised by different rating curves. With a limited number of 
observa- tions, it is difficult to identify the transition point between flow regimes. 

Extremes flow events, both high and low, are rare, leading to fewer calibration measurements and 
a higher uncertainty about the rating curve at these conditions. 

The hydraulic conditions can change over time and after high flow events leading to non-stationarity 
of rating curve in time. This is currently mitigated by an ad-hoc schedule of re-calibration. 

The gauging uncertainty is correlated to the the measured flow. A-priori, the relationship between 
them is unknown, making inference more difficult. 

As with the other processes, we use GPs to represent the rating curves. GPs are flexible enough to 
capture changes of the rating curve at different flow regimes. However, to ensure a robust fit, we 
require the following three adaptions of the standard GP: 

One. Power transformation. As stage-discharge data is often distributed over several orders of 
magnitude, it is difficult to identify a single meaningful lengthscale for the GP kernel. A simple 
approach to alleviate this issue is to perform a logarithmic transformation for both stage and 
discharge to re-scale data into a standard scale. before fitting the model. The use of non-linear 
transform results in a non-Gaussian likelihood, which might affect our GP regression. However, we 



 

nssn.org.au 

assume that for the range of stage- discharge data, the likelihood of log-data is approximately 
Gaussian. 

Two. Composite kernel function. To capture changes in the rating curve over time, we define a 
composite kernel 

 𝐾𝐾𝑅𝑅𝑅𝑅(ℎ, 𝑡𝑡),ℎ′, 𝑡𝑡′; 𝑆𝑆𝑜𝑜,(ℓℎ,ℓ𝑡𝑡)) = 𝑆𝑆𝑜𝑜2exp (𝐾𝐾ℎ(ℎ,ℎ′:ℓℎ) ×𝐾𝐾𝑡𝑡(𝑡𝑡, 𝑡𝑡′:ℓ𝑡𝑡)) (1919) 

 

that yields the covariance between the pairs of stage and time (h, t) and (h′, t′). Separate kernel 
functions Kh and Kt are used to represent potentially different dependencies in time and stage. Kh 
and Kt can take different functional forms. However, their hyperparameters (ℓh, ℓtS0) are learned 
jointly. 

Three. Mean function. With limited number of river gaugings, especially of the extremes, a rating 
curve must provide meaningful extrapolation beyond the available data. In the absence of data, a 
GP reverts to its mean function m(x). In many cases, the mean is assumed constant. However, a 
single value cannot capture the rating curve behaviour at both low and high flow extremes. Instead, 
we use another GP mGP (h) as a mean function to capture a "typical" rating curve at that gauging 
location. 

Formally, mGP (h) GP (p, Km) is a Gaussian process with a mean function p(h) and a covariance func- 
tion Km(h, h′), both functions of the stage h only. By fitting data from multiple years, ignoring time 
dependencies, mGP provides a "timeless" reference when there are big time gaps between river 
measure- ments. To ensure meaningful extrapolation at high flow events, p(h) is defined as a linear 
polynomial of the stage. p(h) also constrains mGP to a monotonic functional form. 

Figure 4. plots the current (as of December 2021) GP rating curves of the selected stations given 
gauging data from 2010-2021. Clearly, the amount and distribution of available gauging data differs 
between stations. The distribution of data in stage and time affects the fidelity and performance of 
the GP model. For example, the large discharge variations of station 419006 result in a higher 
process uncertainty, indicated by a wider confidence interval. With all stations, the process 
uncertainty is mostly constant, though narrower closer to data points. Note that as data has been 
log-transformed prior to modelling, the true discharge variance (after exponentiation) will no longer 
be constant or symmetric around the mean. Therefore, the variance increases as the discharge 
increases. 

To assess the effect of rating curve uncertainty on the water balance in our case study area, we 
examine data at the selected gauging stations collected during the 2019-2020 season. Stage data, 
as recorded by WaterNSW and shown in Figure 4.a, is converted into discharge using a prescribed 
rating curve. Figure 4.c depicts the hourly discharge estimates based on a GP rating curve 
conversion. WaterNSW’s discharge estimates based on the official rating curves, presented in 
Figure 4.b as a comparison, mostly fall within the 95% confidence interval of the GP-based estimates 
(shaded regions). Differences at very low flows are due to reported negative water levels, which 
had to be replaced by a fixed value to ensure a positive input to the log-transform. This indicates 
that the GP model is consistent with WaterNSW’s rating curves. 

Another benefit of the GP representation is the explicit use of time as a parameter of the model. 
This means that every data point is converted with a slightly different rating curve depending on the 
date of measurement. This also affects the uncertainty estimates, such that uncertainty increases 
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for predictions further in time from the actual gauging data . The current GP model assumes a 
smooth kernel over time, leading to gradual changes in rating curves with a rate of change that 
depends on the temporal lengthscale. While our framework can also accommodate non-smooth 
transition in rating curve via GP approximate inference, we leave this for future work. 

The uncertainty about the rating curves propagate into the annual estimates of Qin and Qout. We 
estimate the probability distribution over p(Q) by sampling possible rating curves fRC from our GP 
model fRC GPRC. The entire level data series (as in 11a) is converted using fRC and summed over 
to produce samples of p(Q) fRC. Figure 4.a and Figure 4.b shows the distribution over the annual in 
and out flux during 2019 and 2020, respectively. The uncertain rating curve of 419006 affect the 
overall Qin uncertainty in both years. In contrast, the low uncertainty of 419001 and the regular flow 
at that station leads to a narrow distribution over Qout. While the distribution over Qin is quite larger, 
it is clear that 2019 was a losing year with additional losses of approximately 3000ML in that river 
reach. Rainfall during 2020 resulted in a gaining river with a surplus of roughly 40K ML. 

  

 
 

Figure 4.3934: GP Rating curves for gauging station along the Namoi river between Keepit dam to 
Gunnedah. All rating curves are based on a nested Gaussian process with a stage/time composite 
kernel and a linear mean function. All gauging data from 2010 has been used to fit the GP rating curve 
model. The solid line is the posterior mean of the GP, the dark shade is the process 2σ interval and the 
light shade the likelihood 2σ interval. 
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4.4.6 Discussion and Conclusion 

In this report we develop a pilot for components of the probablistic modelling framework proposed 
in the Milestone 1 report. This demonstrates that a Gaussian Processes (GP) approach can be used 
to model several of the processes and quantify the uncertainty. This is because GPs can model the 
covariance in both space and time, and between space and time. Here we only demonstrate a pilot 
quantification of groundwater surface water interactions, evapotranspiration losses and rating 
curves. While a Bayesian approach to many of these processes is not new (e.g., [10, 18]), 
incorporating this as part of an overall probabilistic framework is a novel approach. 

The current pilot only demonstrates three components of the overall system to highlight how the 
GPs can be used to deliver quantification of the uncertainty. For a full river reach system this needs 
to be integrated in a complete water balance, which can be constrained to sum to 0 using the 
likelihood (e.g., [16]). 

In Figure 4.c, we show how the derived rating curves can be used to predict streamflow and 
uncertainties using the recorded waterlevels. These values then will feed into the evaporation 
modelling (3.1.2), in particular to define the variable river widths for each flow rate. It will also 
determine the river pressure heads (3.2) and subsequently the groundwater surface water 
quantification to develop the complete estimation of uncertainty. 

In conclusion, the results of the first pilot of the probabilistic modelling framework show a clear 
ability to quantify uncertainties based on the application of GPs to the spatial temporal problems. 
With well chosen priors and smoothing kernels these functions are flexible enough to capture the 
variation in the data, and fit both time and space covariances. 

 

(a) Hourly level /stage measurements 
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(b) WaterNSW discharge estimates 

 

(c ) Discharge estimate using GP rating cuves 

Figure 4.C35: The Namoi river’s flow during the 2019-2020 drought. (a) Hourly river level observations 
down- loaded via WaterNSW’s webservices (https://realtimedata.waternsw.com.au/). (b) Hourly 
discharge esti- mates based on WaterNSW’s rating curves (WaterNSW webservices). (c) Discharge 
estimates and uncertainty calculated using the derived GP rating curves. The mean of the GP (solid line) 
The Shaded region represents the 95% confidence intervals around the mean (solid line). The GP 
produces discharge estimates that are similar to the official discharge reported by WaterNSW’s. 
Differences at very low flows are due to reported negative water levels (missing values in a due to 
logarithmic scale). These had to be replaced by a fixed value (1e − 9) to ensure a positive input to the 
log-transform. 
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(a) 2019 

 

(b) 2020 

Figure 4.a36: Namoi - Keepit to Gunnedah - Annual streamflow balance estimates during (a) 2019 and 
(b) 2020. Each estimate is calculated using a sampled rating curve drawn from the GP model. The 
distribution over Qout is tight due to low uncertainty about the rating curve of 419001 and the low 
variability of the measured water level during 2019-2020. The variance of Qin is much larger due to the 
uncertain rating curve of 419006. 

 

Table 4.7: Table 1: Estimated effort on model components. 

Process Weeks Urgency Comments 

Hierarchical conceptual 
model of catchment 

6–9 A Includes all river reaches and other hydrological 
sub-units as 
nodes, as well as link topology (which may include 
some un- 
certain edges); work with hydrologists 
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Rainfall input (gridded) 6–9 B Mostly engineering; 1st pass model is GP but 
hold bet- 
ter models in reserve – suitable kernel may be in 
question; needed for the Macquarie University 
sensor contribution; not a dominant uncertainty on its 
own, but is a common factor for 
other uncertain flows 

Land-based evapotranspi- 
ration (gridded) 

6–9 B Mostly engineering; use GP infrastructure but this 
time mean 
function and kernel may be non-trivial; needed for 
the Mac- quarie University sensor contribution; not 
a dominant uncer- tainty on its own, but is a common 
factor for other uncertain 
flows 

Stream and lake evapora- 
tion (sensed area) 

6–9 B Mostly engineering; known remote sensing 
solution from 
[4] can most likely be used on rivers as well – 
extract river courses from BOM Geofabric, include 
reach data; significant 
single-factor contribution to uncertainty in some 
catchments 

Ungauged inflow from 
rainfall-runoff model 

12–18 B Engineering and hydrology input; inference on 
model pa- 
rameters to include uncertainty; perhaps Bayesian 
model av- eraging approach if conceptual model 
uncertain; usually un- 
certainty is subdominant because it involves small 
volumes 

Ratings curve for dam stor- 
age 

6–9 A Mostly engineering on existing ratings curve data; 
random 
function method such as GP or functional PCA is 
good ap- proach; this curve will introduce 
correlated uncertainty into all releases with dam at 
given water level, so assess further 
impact on estimates of downstream flows 

Ratings curve for stream 
flow 

6–9 A Mostly engineering on existing ratings curve data; 
random 
function method such as GP or functional PCA is 
good ap- proach; this curve will introduce 
correlated uncertainty into all releases with dam at 
given water level, so assess further 
impact on estimates of downstream flows 

Reach length groundwater 
losses 

12–18 A More challenging problem involving numerical 
groundwater 
models though can be lumped conceptual if not 3-
D; concep- tualization may be uncertain so Bayesian 
model averaging may be necessary for this; data 
include groundwater bores, soil information; 
includes "river-aquifer" interactions flagged by 
UNSW, and ANU gravity could help constrain if 
hydroge- 

http://www.bom.gov.au/water/geofabric/index.shtml
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ology prior is secure 

Reach length extraction 6–12 B Regression problem; expert input from water 
management 

Reach length environmental 
water use 

12–18 B Regression problem; data science + hydrology + 
remote sens- 
ing? 

Groundwater use 6–9 C Basic forward model problem; mostly engineering 

Gravity inversion with 
strong geology prior 

18–24 A Engineering + data science + hydrology; effort to 
agree upon 
and parameterize suitable forward model 

Gravity inversion with lim- 
ited geology prior 

24–36 B Experimental; recommend water 
tableomography approach, test in well-
instrumented area where poor coverage 
can be simulated by removing data 

 

4.4.7 Further work and estimated effort 

In the Milestone 1 report we outlined a draft program of work and time/cost investment to fully 
develop the Probabilistic modelling framework. Here we repeat this in Table 1 which represents the 
estimated amount of effort to deliver each of the sub-models in a larger probabilistic model of the 
water balance. We consider data science model-building effort, expert hydrology effort, and 
software engineering or infrastructure building. We also give each item a priority ranking of A (most 
urgent) to C (least urgent) if resources are scarce. 

In this current report we have already delivered parts of Table 1, in particular: 

• a pilot rating curve uncertainty quantification (4.1) 

• a pilot uncertainty quantification of evapotranspiration from stream and riparian zone (3.1.2) 

• a pilot uncertainty quantification of groundwater surface water interaction (3.2) 

However, many of the elements in the table are clearly "future work" and therefore the estimates in 
the table can still guide further development. 

Some items are relatively simple and can be delivered in under 2 months (2-3 sprints). These are 
mostly well-established data science methods (parametric regression models or Gaussian 
processes) being applied to quantify uncertainty in well-understood hydrological processes. The 
technical risk for these items is low, and the effort is mostly engineering time involved in collating 
data and validating the solution. These items also tend not to dominate the uncertainty in our initial 
investigations, although their uncertainty is still not at present rigorously quantified and thus the 
contribution of other uncertain items will become more strongly constrained if these are understood 
more precisely. 

Of the quickly delivered items, ratings curve uncertainty is well-posed and relatively straightforward 
to implement, while also contributing substantially to the uncertainty in certain catchments with large 
volumes of water in dam releases or gauged flows. In this current report, we demonstrate a pilot of 
the ratings curve uncertainty (4.1). Uncertainties in the ratings curve will also introduce correlations 
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between downstream flows that will inflate final uncertainties in the water balance, and will not 
average out as the number of observations increase. Ratings curve uncertainty therefore seems like 
a relatively low-risk, high-value investment. 

Other items are necessarily more experimental and higher risk, fusing conceptual or numerical 
hydrological models with random functions and sampling the uncertainties via MCMC. These are 
usually addressing processes that are much less clearly understood and, unsurprisingly, are thus 
given longer time horizons. Groundwater models, including those for which cold atom gravity 
sensing will be relevant, fall into this class. While it is not difficult to generate gravity signals from a 
given model of rock properties, the amount of effort that goes into specifying priors on realistic rock 
property models and validating them even in a well- instrumented context is expected to be larger 
than for the other components. 

Delivering a fully developed end-to-end working prototype, we recommend concentrating only on 
the priority rank A items. Each of these tasks can be pursued independently in any order, but are 
each scoped at around 2 FTE — one data scientist, one half-time hydrologist, and one half-time 
research engineer. Thus, for example, we expect 2 FTE of effort can deliver either the high-priority 
water balance hydrological submodels, or preliminary gravity inversions for groundwater systems, 
on that timescale. With 4 FTE of effort (2 data scientists, 1 hydrologist, 1 engineer) both of those 
programs could be attempted.  
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4.5 Groundwater Hydrological Processes 

4.5.1 Introduction 

Understanding the groundwater and surface water interaction is important for sustainable 
management of water. Groundwater recharge is one of the components of the water balance that 
is notoriously hard to determine as it is difficult to measure directly (experimentally) because it is 
taking place in the subsurface. Its estimation is also associated with large spatio-temporal 
uncertainties due to variability in climate and heterogeneity of soils and hydrogeology.  

There are three fundamental mechanisms of groundwater recharge, diffuse recharge where the 
groundwater table is directly recharge by rainfall through the general land-surface, focussed 
recharge where the groundwater table is recharged by flow in stream/river channels and flood plain 
recharge during large floods (overbank flows). In this work we will focus on the two first mechanisms 
of recharge.  

In the context of the WIATW project, we are considering different hydrologic scenarios labelled ‘Use 
Cases’. These use cases relate to both stakeholder water balance issues defined by WaterNSW, 
NRAR and NSW-DPIE and physical climatic and hydrologic conditions. While in reality surface water 
flow conditions and interactions with the subsurface represent a continuum of climatic conditions 
(different degrees of antecedent dryness) and sizes of flow events (i.e., controlled dam-release to 
large floods), we are here simplifying the complexity by defining a ‘low flow use case' and ‘high flow 
use case' according to section 3.3.1.3 of this report. In summary the low flow use case explores 
transmission losses during very dry periods and the high flow use case “covers a flooding event or 
a very wet period”. In our report we will attempt to relate our conceptual understanding of surface 
water groundwater interactions and recharge processes to these use cases. For the low-flow case, 
transmission losses can be due to groundwater recharge, vadose zone storage, and/or 
evapotranspiration. Hence our work around groundwater recharge can inform both use cases. 

4.5.2 Methods 

4.5.2.1 Study Sites and installations 

For this project data from two NSW NCRIS sites were used, Wellington Research Station and Maules 
Creek Catchment (see Figure 4.40). Each of these sites contain an extensive network of 
piezometers where the groundwater levels have been monitored for over 10 years. A combination 
of self-contained (Solinst) and vented (In-Situ) groundwater level loggers were deployed in the 
boreholes and set for logging at 30 min intervals. The water level data from the non-vented loggers 
(Solinst) were corrected for barometric pressure variations using atmospheric pressure data from a 
Solinst baro-logger installed in the airspace of a borehole. 
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Figure 4.4037: Map of the NCRIS sites. 

 

The Wellington NCRIS site is adjacent to the Macquarie River and consists of a range of piezometers 
on a profile that are located from the river flat up the hillside (see Figure 4.41). The geology consists 
of a consolidated bedrock of Silurian to Devonian meta-sediments and meta-basalts into which the 
Macquarie River has cut a valley. This Valley is partly infilled with up to 40 meters of unconsolidated 
alluvial sediments (gravels, sands, silts and clays). On the hillslopes there is a weathering profile of 
predominantly clays and colluvial deposits [33]. For this work the focus was on the hillslope bores 
as their only recharge mechanism is diffuse recharge, whereas the river flat bores have a mixture of 
diffuse and focused recharge (which is difficult to untangle). The construction details of relevant 
piezometers used in this work are given in the Data section (Table 8-1). Some of the hillslope 
piezometers are located in fractured rock and are uncased bores without screens and hence water 
enters these bores through the various fractures that are present in the basalt over various depths 
of the bores. 

 

Figure 4.4138: Site map of Wellington NCRIS site. The Hillslope bores does not respond to changes in 
the river level (as opposed to the river flat bores) and hence can be used to analyse events of diffuse 
recharge. 
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Figure 4.4239: Cross section of Wellington showing the piezometer locations and screens (for alluvium 
piezometers) and maximum, median and minimum groundwater levels recorded between 2011-2020. 

 

The studied part of the Maules Creek Catchment contains three creeks, Middle Creek that joins 
Horsearm Creek which then joins Maules Creek that is a tributary to the Namoi River. There are 
three NCRIS sites, two which are adjacent to Middle Creek: East Lynne and Middle Creek Farm, and 
a third site, Elfin Crossing which is adjacent to Maules Creek as shown in Figure 4.40. Middle Creek 
is an intermittent creek with periods of flow lasting days to months after significant rainfall in the 
mountains upstream [34]. During periods of no surface flow the groundwater table recedes below 
the creek creating an unsaturated zone below the creek bed. Elfin Crossing is located at a perennial 
section of Maules Creek downstream of the confluence of Horsearm and Maules Creek. It has zones 
of persistent groundwater discharge further upstream maintaining flow all year round. Figure 4.43 
shows the cross section of the sites and the locations of the piezometers utilised in this study, with 
their details given in the Data section (Table 8-2). The geology consists of up to ~30 m of 
unconsolidated alluvium (cobbles, gravels, sands, silts and clays) deposited on mainly Permian 
sandstones, claystones, conglomerates and coal-measures [35] 
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Figure 4.4340: Cross section of Middle Creek Farm showing the location of piezometer screens (black 
squares) and maximum, median and minimum groundwater levels recorded between 2012-2020. 

 

 

Figure 4.4441: Cross section of Elfin Crossing showing the location of piezometer screens (black squares) 
and maximum, median and minimum groundwater levels recorded between 2009-2020. 

 

4.5.2.2 Soil Moisture Balance (SMB) Model 

To explore a basic temporal water balance model and periods of potential groundwater recharge a 
soil moisture model was used. The model used was originally applied by Cuthbert, et al. 2014 [36]at 
Wellington Caves (about ~10 km from the Wellington Research Station) and is shown schematically 
in Figure 4.45, where for the purpose here Rch represents groundwater recharge and Dr drainage 
to the deeper system. For this project the shallow karst store (S2) was replaced with a shallow 
vadose zone. This model, also known as a bucket model, gives flexibility in how it is set up with the 
number of layers (‘buckets’) able to be chosen. The input data for this model are the timeseries of 
rainfall and calculated potential evapotranspiration. For the various soil related parameters in the 
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model, the values that had been determined for the Wellington Caves site were used and are given 
in Table 3. These values were chosen as the Wellington Caves site has similar soil conditions to the 
Wellington Research Station and hence it was believed that these values would be also 
representative of the Research Station. 

Table 4.8: The parameter values used for the Wellington SMB model. These values were taken from 
Cuthbert, et al. 2014. 

Parameter Description Value 

θFC Field capacity of soil 25% 

θWP Wilting point of soil 5% 

Ze Soil depth subjective to evaporative drying 0.1m 

Zr Rooting depth 0.47m 

Kc Crop efficient 1 

P Readily Available Water to Total Available Water ratio 0.5 

B Proportional of bare soil 0.1 

 

 

 

 

Figure 4.4542:  Graphical representation of the Soil Moisture Balance model adapted from Cuthbert, et 
al. 2014.Where RF represents infiltration from rainfall, Rch groundwater recharge, Et evapotranspiration, 
E evaporation, Dr drainage to the deeper system, TAW total available water in soil, S1 soil store, S2 
shallow vadose zone store. 

 

4.5.3 Results 

4.5.3.1 Wellington 

Based on the timeseries of groundwater levels for the hillslope bores at Wellington Research 
Station, potential diffuse recharge events were identified as shown in Figure 4.46. The diffuse 
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recharge events were identified based on an increase in the groundwater level in multiple bores 
and if they displayed a typical recharge profile (i.e., a sharp initial increase followed by a longer 
recession) and matched with observed rainfall events. There is one significant recharge event in 
2016 across all bores, comprised of seven individual recharge events. There are four smaller events 
over the study period, though some of these are not observed widespread across the site, 
suggestive of spatial variability in diffuse recharge, where the recharge threshold is only exceeded 
at some sites. 

 

 

Figure 4.4643: Top:  Surface water (data from WaterNSW) and groundwater levels for river flat 
monitoring bores at the Wellington Research Station. Bottom: Groundwater levels for hillslope 
monitoring bores at Wellington. Potential diffuse recharge events are indicated with a dashed black line. 

4.5.3.2 Maules Creek Catchment 

Middle Creek Farm Site 

The measured timeseries of surface water and groundwater levels at Middle Creek Farm are shown 
in Figure 4.47. Two nested bores are located at this site BH18 which is about 20 m from the creek 
and BH19 which is about 70 m from the creek. Over this period from 2012 to 2020 there are ten 
occurrences of significant increase in the groundwater levels (ranging from 1 to 4 m), and all of these 
correspond with periods of sustained stream flow. BH19 shows a damped and lagged response to 



 

nssn.org.au 

flow in the creek compared to BH18. During flow periods there are smaller recharge events where 
there is a high frequency (i.e., ‘spikey’) response in the groundwater to changes in surface water 
levels.  

 

Figure 4.4744: Surface water and groundwater levels at the Middle Creek Farm site. Surface water levels 
are measured by a logger in the stilling well placed 1 m above the deepest part of the creek bed. Note 
that when the stilling well signature (blue line) is horizontal there is no flow in the creek. 

 

Elfin Crossing 

The measured groundwater levels at Elfin Crossing are shown in Figure 4.48. At this site, as 
reflected in the timeseries, the groundwater table of shallow bores remains above the creek bed 
throughout the year (except for a period between 2018 and 2020). Due to the general permanence 
of surface water, the stream at this section is classified as a perennial stream. The connection 
between the groundwater table and the creek water levels is therefore maintained over time 
resulting in more constant groundwater levels compared to Middle Creek Farm. These generally 
constant groundwater levels are interrupted by high frequency (i.e., spikey) groundwater level 
responses to flood events in the stream. 
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Figure 4.4845: Surface water levels (data from WaterNSW) and groundwater levels at Elfin Crossing on 
Maules Creek. 

 

4.5.4 Discussion 

4.5.4.1 Hydrological Conceptual Models 

Based on the groundwater timeseries from the different sites, hydrological conceptual models were 
developed to represent different groundwater processes. These processes have been related to 
the different use cases explored in the WIATW project. In intermittent streams, such as Middle 
Creek, especially after a dry period without surface flow, the groundwater table is lower than the 
stream bed (i.e., disconnected), as shown in Figure 4.47. When stream flow is generated by rainfall 
upstream there is immediate response in both BH18 and BH19, however the peak in BH19 is damped 
and lagged. As BH19 is further away from the creek this is consistent with focussed recharge from 
the creek as the surface water infiltrates down to the water table and laterally away from the stream 
as represented in Figure 4.49a.  

In perennial streams the surface water and groundwater levels are in a dynamic equilibrium, and 
different effects are observed to flow events. At Elfin Crossing there are high frequency 
groundwater levels responses to increases in the surface water level as the continuously saturated 
subsurface and the creek buffer each other, as a two-way connection exists. Therefore, for perennial 
streams a flow release may lead to bank storage effects with the stored water returning to the 
stream after the flow-release (unless large groundwater abstraction is happening at the same time), 
represented in Figure 4.49b and c. This same behaviour can be observed at Middle Creek in 2016 
- during a period of sustained surface water flow - as the groundwater table during that period 
connected to the stream. So, while Middle Creek is classified as an intermittent stream, it can 
temporarily behave as a perennial stream connected to the groundwater table at times of 
substantially wetter conditions. 
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Figure 4.4946: Hydrological conceptual models for the high flow use case. A shows the groundwater 
response to a flow event with the groundwater table prior to the event some distance below the creek 
bed (i.e., as observed in intermittent creeks). B shows the groundwater response to a flow event where 
the stream level and groundwater levels were connected prior to the event. C shows the return of water 
stored in the creeks banks as the surface water flow event in B recedes. The behaviour seen in B and 
C are typical for perennial streams. 

 

4.5.4.2 Soil Moisture Balance Model 

Wellington 

To determine times of diffuse recharge a soil moisture balance model was used. The results of the 
Wellington SMB model are shown in Figure 4.50. The calculated periods of diffuse recharge from 
the Wellington SMB model and the identified periods of recharge from the groundwater level 
timeseries are given in Table 4.9. Of the recharge events determined by the SMB model all, with 
the exception of the two in 2020, correspond to recharge events observed in the groundwater 
timeseries. There are three additional potential recharge events identified in the groundwater 
timeseries, though one of these is shortly (20 days) after the recharge events predicted by the SMB 
model in 2020. 
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Figure 4.5047: The calculated soil moisture deficit and groundwater recharge from the Wellington Soil 
Moisture Balance model (SMB) model. According to the model, in principle, recharge can only happen 
when the calculated soil moisture deficit reaches zero and water is free to percolate to the water table. 
The potential diffuse recharge events that are in addition to those identified from this model are 
indicated with vertical dashed black lines. 

 

Table 4.9: The identified recharge events for the Wellington Soil Moisture Balance model (SMB) and 
groundwater bores, with amount of rainfall for that day and 7, and 14 days prior. 

Event 
number 

Date of 
recharge 
(SMB) 

Recharge 
(mm) 
(SMB) 

Date of 
increase 
(GW) 

14-day P 
(mm) 

7-day P 
(mm) 

Rainfall 
(mm) 

Observed 
/ bores 
with data 

1 3/03/2012 29.4 6/03/2012 120.0 102.6 44.8 2/2 

2   17/07/2012 53.4 53.2 0.0 4/4 

3   25/07/2013 53.3 4.9 0.0 8/8 

4 21/06/2016 23.1 21/06/2016 80.4 41.1 10.8 10/13 

5 6/07/2016 16.3 7/07/2016 46.6 43.2 5.4 7/13 

6 20/07/2016 30.1 19/07/2016 78.2 55.8 49.2 10/13 

7 3/08/2016 10.0 2/08/2016 41.4 34.8 34.2 7/13 

8 3/09/2016 17.9 31/08/2016 94.4 81.8 21.6 13/13 

9 19/09/2016 14.4 20/09/2016 61.1 39.4 26.8 9/13 

10 1/10/2016 3.2 1/10/2016 83.2 27.2 11.1 5/13 

11 4/04/2020 15.2  113.8 102.8 56.0  

12 10/04/2020 7.0  124.4 88.6 21.4  

 

Middle Creek 

The same SMB model was also applied for the Middle Creek Farm site, with the results shown in 
Figure 4.51. Five recharge events were identified over the period 2012-2020. These also 
corresponds with flow events in Middle Creek (see Table 4.10). In the groundwater level timeseries, 
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there are seven additional potential recharge events which corresponds to times of lower rainfall 
totals than the diffuse recharge events and hence these recharge events are likely focussed 
recharge events. The monitoring bore locations at Middle Creek makes it harder to clearly 
differentiate between diffuse and focused recharge, than for the Wellington hillslope bores, as there 
are no bores that are not potentially influenced by the creek.   

 

Figure 4.5248: The calculated soil moisture deficit and groundwater recharge from the Middle Creek 
SMB model. 

 

Table 4.10: The identified recharge events for the Middle Creek Soil Moisture Balance model (SMB) and 
groundwater bores, based on BH18, with amount of rainfall for that day and 7, and 14 days prior. N/A 
indicates that groundwater data does not exist for that time period. 

Event 
number 

Date of 
recharge 
(SMB) 

Recharge 
(mm) 
(SMB) 

Date of 
increase 
(GW) 

14-day 
P (mm) 

7-day P 
(mm) 

Rainfall 
(mm) 

1 2/02/2012 97.3 N/A 200.1 190.6 92.4 

2   11/07/2012 26.2 24.9 24.7 

3 29/01/2013 37.7 28/01/2013 140.5 137.9 65.9 

4   12/06/2013 35.5 15.5 1.2 

5 27/03/2014 49.2 27/03/2014 171.8 167 75.8 

6   27/08/2014 75.4 48.4 4.8 

7   17/06/2015 33.9 33.8 33.6 

8   19/06/2016 35.2 30.6 18.6 

9 8/02/2020 13.5 8/02/2020 105.6 104.4 87.6 

10   28/07/2020 16.7 15.7 8.8 
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11   25/10/2020 75.8 68.1 35.4 

12 22/12/2020 9.6 N/A 128.2 128.1 82.4 

 

To verify the SMB model, monitoring bore BH22 at East Lynne was used as it is approximately 1 km 
away from the stream and therefore there would be a lag for focused recharge events while there 
would be a more immediate response to diffuse recharge events. The timeseries for groundwater 
levels in BH22-3 is shown in Figure 4.53, along with groundwater levels in BH18-2, which is an 
analogy for stream flow. There is a delayed and subdued response in BH22-3 to responses in BH18 
and hence flows in Middle Creek, with an average lag of 69 days. Unfortunately, BH22-3 only 
contains data that covers one of the potential diffuse recharge events. However, for this event there 
is slight increase in the groundwater levels which is consistent with this being at least partially a 
diffuse recharge event. 

 

Figure 4.5349: Comparison between groundwater levels in BH18-2 (as an analogue for stream flow) and 
BH22-3 groundwater level timeseries. The diffuse recharge events identified by the soil moisture 
balance (SMB) model are indicated with dashed black lines. 

 

To confirm the other identified diffuse recharge events from the SMB model, the response in BH19 
to different recharge events was investigated. Of the five recharge events observed in BH19-1, two 
were potentially combined diffuse and focused recharge events (27/03/2014 and 8/02/2020), and 
the remaining three were focussed recharge only. When the groundwater response after each flow 
event is compared (see Figure 4.54), the recharge event on 27/03/2014 shows a steeper response 
which would fit with both diffuse and focussed recharge occurring. This further supports the diffuse 
recharge occurring at this time as predicated by the SMB model. The response to other predicted 
diffuse recharge event though appears very similar to the focussed recharge events. This could be 
due to the fact the predicted diffuse recharge is low compared to the focused recharge component 
(see Table 4.10) and/or the parameters of the model need fine-tuning. 
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Figure 4.5450: Comparison of response in groundwater levels at BH19-1 after a flow event. The zero 
time on the x-axis is the time at which the event started in the BH18-2 (as an analogue for stream flow). 

 

4.5.4.3 Low Flow Use Case 

The SMB models show that there are times when rainfall infiltrates into the soil and vadose zone, 
with a decrease in the soil moisture deficit but this does not result in groundwater recharge. In dry 
periods when the unsaturated zone is larger, the rainfall that infiltrates does not reach the 
groundwater table but is removed by evapotranspiration, as represented in Figure 4.56. This means 
in dry and warm climates; the recharge is often much smaller than the infiltration. This demonstrates 
how vadose zone storage and evapotranspiration can contribute to transmission losses for flow 
releases in dry streams. Groundwater recharge in intermittent streams can also contribute to surface 
water transmission losses. The amount of loss will partly be controlled by the location of the 
groundwater table at the time of the release, as the lower the groundwater table (the greater the 
unsaturated zone), the greater the surface water losses. 

 

Figure 4.5651: Hydrological conceptual model for the low flow use case. 
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4.5.4.4 Groundwater Recharge 

At Middle Creek over the 9 years of monitoring there was more focussed recharge events (10 
events) than diffuse recharge (2-3 events at most) and the magnitude of the focussed recharge 
events was larger. Which shows that focussed recharge is the predominate recharge mechanism 
for intermittent creeks in semi-arid/arid regions. The occurrence of diffuse recharge events was also 
similar at Wellington, with only one significant event over the same time period. At Wellington the 
focused recharge is limited as this section of the Macquarie River is perennial and therefore, like for 
Elfin Crossing on Maules Creek, most streambed and bank infiltration during surface water flow 
events will return as bank storage to the creek as the surface water flow recedes. 

At the Middle Creek Farm site, the focussed recharge events, in general, were associated with lower 
rainfall than the diffuse recharge event. At this site stream flow is generated by significant rainfall 
upstream in the mountains, which does not always correspond with significant rainfall locally at the 
Middle Creek Farm site. This potentially means that direct rainfall at such sites may not be a 
determining factor for groundwater recharge, especially if stream flow is generated by rainfall 
further upstream. 

4.5.4.5 Limitations 

Using piezometers/boreholes to gain understanding of groundwater processes is limited to 
locations where they exist. The cost of drilling does limit the installation of boreholes and hence 
groundwater level data is as a rule spatially sparse. Which means that determining the spatial 
variability of recharge remains a challenge. While boreholes can give insights into groundwater 
processes in the saturated zone, water movement through the unsaturated zone can only be 
inferred. Hence a knowledge gap exists around water movement in the unsaturated zone, which 
nascent terrestrial quantum gravity sensor technology may be able to provide insights into.  

Some aspects of this work have been limited by lack of data due to logger failure (e.g., verification 
of the SMB model at Middle Creek). In addition to data gaps due to logger failure, loggers can also 
suffer from drift over time. Therefore, manual dip readings of the water levels need to be carried out 
on a regular basis to detect any drift. 

4.5.5 Conclusions 

This work has shown that focussed recharge is the predominate recharge mechanism in areas 
adjacent to intermittent streams, with on average one to two recharge events per year. This process 
[17]also potentially means that direct rainfall at such sites may not be a determining factor for 
groundwater recharge, especially if stream flow is generated by rainfall further upstream. In contrast, 
diffuse recharge is more episodic, with only one to two significant events, depending on location 
over a ten-year period. 
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6 Glossary 

DEM: Digital Elevation Model data. 

GRACE: Gravity Recovery and Climate Experiment. An initial and follow on mission using satellites 
to quantify changes in mass on Earth by measuring Earth’s gravity field. Operated by NASA and the 
German Aerospace Centre, commencing 2002. 

GRAMM: Gravitational Modelling and Measurement. The program name for the team at ANU 
working on gravity sensors 

GW: Groundwater 

LoRaWAN: Communication protocol ‘long-range wide area network’ 

Mascon: Mass Concentration elements 

MATLAB:  

MQ – Macquarie University. 

SW: Surface Water 

TRL: Technology Readiness Levels (TRLs) track progress of the development of an innovation on a 
scale of one to nine. Using TRL scales as a performance indicator recognises that projects often 
operate in pre commercial development phases, but still make significant progress towards a 
technology development and later commercial outcomes. (Australian CRC Definitions) 

TRL 1 TRL 2 TRL 3 TRL 4 TRL 5 

Basic principles 
observed 

Technology concept 
formulated 

Experimental proof 
of concept 

Technology 
validation in lab 

Technology valid in 
relevant environment 

TRL 6 TRL 7 TRL8 TRL 9  

Demonstration in 
relevant 
environment 

Demonstration in 
operational 
environment 

System complete 
and qualified 

Successful mission 
operations 

 

 

Voxel: a single sample, or data point, on a regularly spaced, three-dimensional grid 

  

http://www.ga.gov.au/scientific-topics/national-location-information/digital-elevation-data
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7 Data 

 

Table 7.1: : Relevant bore details for Wellington 

Bore Latitude Longitude Screen/s Screen interval 
(m) 

Maximum 
depth (m) 

WRS09 -32.5723493 148.9847819 WRS09 17-20  

WRS10 -32.5738335 148.9848462 WRS10   

WRS20 -32.5749458 148.9813574 N/A  65.62 

WRS23 -32.5741507 148.9838527 N/A  45.47 

WRS25 -32.5738639 148.9847431 N/A  32.77 

WRS27 -32.5732363 148.9846283 WRS27S 20-23  

WRS32 -32.5729188 148.9839737   43.4 

WRS34 -32.5724148 148.9843344 WRS34D 32-38  

WRS35 -32.5724880 148.9838227 WRS35S 22-25  

     WRS35D 34-37  

WRS37 -32.5726309 148.9828227 N/A  45 

WRS38 -32.5726937 148.9823897 N/A  65.65 

WRS40 -32.5757548 148.9852061 N/A  45 

 

 

Table 7.2: : Relevant piezometer details for Maules Creek Catchment 

Location Bore Latitude Longitude Distance to 
nearest 
water course 
(m) 

Screen/s Screen 
depth (m) 

East Lynne BH22 -30.4501398 150.1635433 1075 BH22-3 29.8 

Middle Creek  BH18 -30.4658620 150.1628821 20 BH18-1 9.36 

Farm     BH18-2 11.46 

     BH18-3 17.28 

     BH18-4 22.28 

 BH19 -30.4656196 150.1624323 71 BH19-1 9.33 

     BH19-2 22.87 

Elfin 
Crossing 

EC17 -30.4960467 
150.0834755 

70.8 EC17 5.79 

 EC13 -30.4958587 150.0832788 44.0 EC13 7.505 

 EC3 -30.4956370 150.0828367 6.3 EC3 3.105 

 BH13 -30.4954425 150.0827965 28.0 BH13-1 8.57 

     BH13-5 16.76 

     BH13-9 24.75 

     BH13-11 28.855 

 BH12 -30.4954078 150.0827614 32.6 BH12-1 25.825 

     BH12-4 40.7 

 BH14 -30.4953685 150.0827221 38.5 BH14 26.0 
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Figure 7.1: Designed system electronic connection diagram. 

 

 

Figure 7.2:  Flow Chart diagram for sensor system operation.  
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